ENHANCEMENT OF BIOAVAILABILITY OF GLIPIZIDE USING SOLID DISPERSIONS WITH GUM AEGLE MARMELOS
DOI:
https://doi.org/10.22159/ijap.2022v14i2.43518Keywords:
Glipizide, Solid dispersion, Aegle marmelos, Solubility, DissolutionAbstract
Objective: The aim of the proposed study was formulation and in vitro/ vivo evolution of solid dispersions of glipizide with gum Aegle marmelos.
Methods: The phase solubility of glipizide in 0.1N HCl was investigated in the presence of different concentrations of gum Aegle marmelos. The solid dispersions (SDs) of glipizide with gum Aegle marmelos were formulated using solvent evaporation method at ratios of 1:1, 1:2, and 1:5 (glipizide: gum Aegle marmelos). Dissolution studies were conducted. The physicochemical characterization of the formulations was performed by using Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Subsequently, bioavailability of pure glipizide, solid dispersion and marketed product was performed in rat.
Results: Glipizide solubility increased as the concentration of gum Aegle marmelos in 0.1N HCl was raised. The solubility study indicates spontaneous drug solubilization, which is supported by negative values of Gibb's free energy (ΔGotr). Glipizide rate of dissolution was increased in SDs containing gum, and the rate increased as the concentration of gum in the SDs increases. After preparing SDs and physical mixtures with gum, the mean dissolution time (MDT) of glipizide decreases considerably. FTIR spectroscopy study revealed that stability and the absence of a well-defined glipizide-gum interaction. The amorphous condition of glipizide in SDs of glipizide with gum was revealed by DSC and XRD studies.
Conclusion: The DSC and XRD studies indicate conversion of drug from crystalline to microcrystalline or amorphous form after formulation of solid dispersion with Aegle gum. The solid dispersion of glipizide with Aegle gum (893.04±25.5) showed better therapeutic activity compared to pure glipizide (535.65±11.5) and marketed formulation (767.5±13.6).
Downloads
References
Chanda R, Ghosh A, Mitra T, Mohanty J, Pawankar G. Phytochemical and pharmacological activity of Aegle marmelos as a potential medicinal plant: an overview. Internet J Pharmacol. 2007;6(1).
Jagetia GC, Baliga MS. The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: a preliminary study. J Med Food. 2004;7(3):343-8. doi: 10.1089/jmf.2004.7.343, PMID 15383230.
Kintzios SE. Terrestrial plant-derived anticancer agents and plant species used in anticancer research. Crit Rev Plant Sci. 2006;25(2):79-113. doi: 10.1080/07352680500348824.
Baliga MS, Bhat HP, Joseph N, Fazal F. Phytochemistry and medicinal uses of the bael fruit (Aegle marmelos Correa): a concise review. Food Res Int. 2011;44(7):1768-75. doi: 10.1016/j.foodres.2011.02.008.
Anandharajan R, Jaiganesh S, Shankernarayanan NP, Viswakarma RA, Balakrishnan A. In vitro glucose uptake activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, PI3 kinase and PPAR gamma in L6 myotubes. Phytomedicine. 2006;13(6):434-41. doi: 10.1016/j.phymed.2005.03.008, PMID 16716914.
Kamalakkannan N, Stanely Mainzen Prince PSM. Antihyperlipidaemic effect of Aegle marmelos fruit extract in streptozotocin-induced diabetes in rats. J Sci Food Agric. 2005;85(4):569-73. doi: 10.1002/jsfa.1978.
Choudhary Y, Saxena A, Kumar Y, Kumar S, Pratap V. Phytochemistry, pharmacological and traditional uses of Aegle marmelos. UHJPB. 2017;5:27-33.
Kamalakkannan N, Prince PS. Hypoglycaemic effect of water extracts of Aegle marmelos fruits in streptozotocin-diabetic rats. J Ethnopharmacol. 2003;87(2-3):207-10. doi: 10.1016/s0378-8741(03)00148-x, PMID 12860309.
Mandal PK, Mukherjee AK. Structural investigations on bael exudate gum. Carbohydr Res. 1980;84(1):147-59. doi: 10.1016/S0008-6215(00)85438-5.
Shirsand SB, Jonathan V, Potdar PS, Shirsand SS. Aegle marmelos as a disintegrant in design of fast dissolving tablets. Adv Nov Drug Deliv. 2016;1(1):7-11.
Joshi Y, Chaudhary RK, Teotia UVS. Formulation and evaluation of diclofenac sodium sustained release matrix tablets using Aegle marmelos Gum. IJCTPR. 2013;1(3):174-80.
Alam MT, Parvez N, Sharma PK. FDA-approved natural polymers for fast-dissolving tablets. J Pharm (Cairo). 2014;2014:952970. doi: 10.1155/2014/952970. PMID 26556207.
Ratnaparkhi MP, Chaudhari PD. Solubility enhancement of poorly water-soluble drug using natural carrier. Int J Life Sci Pharm Res. 2017;7(3).
Murali Mohan Babu GV, Prasad ChD, Ramana Murthy KV. Evaluation of modified gum karaya as carrier for the dissolution enhancement of poorly water-soluble drug nimodipine. Int J Pharm. 2002;234(1-2):1-17. doi: 10.1016/s0378-5173(01)00925-5, PMID 11839433.
Varshini SS, Rajesh V. Fundamental aspects of a third component used in ternary solid dispersion: a review. Int J Appl Pharm. 2021;13(3):11-7.
Alkufi HK, Rashid AM. Enhancement of the solubility of famotidine solid dispersion using natural polymer by solvent evaporation. Int J App Pharm. 2021;13(3):193-8. doi: 10.22159/ijap.2021v13i3.40934.
Mallick S, Patra RK, Murthy PN. Current trends for preparation of solid dispersion. Res J Pharm Life Sci. 2020;1(3):15-25.
Kim EJ, Chun MK, Jang JS, Lee IH, Lee KR, Choi HK. Preparation of a solid dispersion of felodipine using a solvent wetting method. Eur J Pharm Biopharm. 2006;64(2):200-5. doi: 10.1016/j.ejpb.2006.04.001, PMID 16750355.
Trapani G, Franco M, Latrofa A, Pantaleo MR, Provenzano MR, Sanna E, Maciocco E, Liso G. Physicochemical characterization and in vivo properties of zolpidem in solid dispersions with polyethylene glycol 4000 and 6000. Int J Pharm. 1999;184(1):121-30. doi: 10.1016/s0378-5173(99)00112-x, PMID 10425358.
Higuchi T, Connors K. Phase solubility techniques. Adv Ana Chem Instrum. 1965;4:17-123.
Arias MJ, Gines JM, Moyano JR, Rabasco AM. Dissolution properties and in vivo behaviour of triamterene in solid dispersions with polyethylene glycols. Pharm Acta Helv. 1996;71(4):229-35. doi: 10.1016/s0031-6865(96)00017-9, PMID 8921741.
Damian F, Blaton N, Naesens L, Balzarini J, Kinget R, Augustijns P, Van den Mooter GV. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur J Pharm Sci. 2000;10(4):311-22. doi: 10.1016/s0928-0987(00)00084-1, PMID 10838021.
Okonogi S, Oguchi T, Yonemochi E, Puttipipatkhachorn S, Yamamoto K. Improved dissolution of ofloxacin via solid dispersion. International Journal of Pharmaceutics. 1997a;156(2):175-80. doi: 10.1016/S0378-5173(97)00196-8.
Stepensky D, Friedman M, Srour W, Raz I, Hoffman A. Preclinical evaluation of pharmacokinetic-pharmacodynamic rationale for oral CR metformin formulation. J Control Release. 2001;71(1):107-15. doi: 10.1016/s0168-3659(00)00374-6, PMID 11245912.
Pepato MT, Keller EH, Baviera AM, Kettelhut IC, Vendramini RC, Brunetti IL. Anti-diabetic activity of Bauhinia forficata decoction in streptozotocin-diabetic rats. J Ethnopharmacol. 2002;81(2):191-7. doi: 10.1016/s0378-8741(02)00075-2, PMID 12065150.
Gabra BH, Sirois P. Hyperalgesia in non-obese diabetic (NOD) mice: a role for the inducible bradykinin B1 receptor. Eur J Pharmacol. 2005;514(1):61-7. doi: 10.1016/j.ejphar.2005.03.018, PMID 15878325.
Albertson C, Davis C, Ellison J, Chu C. Clinical evaluation of a new, miniaturized biosensor for self-monitoring of blood glucose. Clin Chem. 1998;44(9):2056-7. doi: 10.1093/clinchem/44.9.2056, PMID 9733010.
Varma MVS, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci. 2005;25(4-5):445-53. doi: 10.1016/j.ejps.2005.04.003, PMID 15890503.
Zhang Q, Yie G, Li Y, Yang Q, Nagai T. Studies on the cyclosporin a loaded stearic acid nanoparticles. Int J Pharm. 2000;200(2):153-9. doi: 10.1016/s0378-5173(00)00361-6, PMID 10867245.
Wagner SG. Fundamentals of clinical pharmacokinetics. 1st ed. Hamilton, IL: Drug Intelligence Publications Inc; 1975. p. 71.
Van den Mooter G, Augustijns P, Blaton N, Kinget R. Physico-chemical characterization of solid dispersions of temazepam with polyethylene glycol 6000 and PVP K30. International Journal of Pharmaceutics. 1998;164(1-2):67-80. doi: 10.1016/S0378-5173(97)00401-8.
Costa P, Sousa Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123-33. doi: 10.1016/s0928-0987(01)00095-1, PMID 11297896.
Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics. 1983;15(1):25-35. doi: 10.1016/0378-5173(83)90064-9.
Biswal S, Sahoo J, Murthy PN, Giradkar RP, Avari JG. Enhancement of dissolution rate of gliclazide using solid dispersions with polyethylene glycol 6000. AAPS PharmSciTech. 2008;9(2):563-70. doi: 10.1208/s12249-008-9079-z.
Valizadeh H, Nokhodchi A, Qarakhani N, Zakeri-Milani P, Azarmi S, Hassanzadeh D, Löbenberg R. Physicochemical characterization of solid dispersions of indomethacin with PEG 6000, Myrj 52, lactose, sorbitol, dextrin, and Eudragit E100. Drug Dev Ind Pharm. 2004;30(3):303-17. doi: 10.1081/ddc-120030426, PMID 15109030.
Published
How to Cite
Issue
Section
Copyright (c) 2022 soudamini Mallick
This work is licensed under a Creative Commons Attribution 4.0 International License.