COMPARISON OF CHITOSAN FROM CRAB SHELL WASTE AND SHRIMP SHELL WASTE AS NATURAL ADSORBENT AGAINST HEAVY METALS AND DYES

Authors

  • NERDY NERDY Department of Pharmacy, Faculty of Pharmacy, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara, Indonesia, 20355 https://orcid.org/0000-0002-1993-4415
  • PUJI LESTARI Department of Pharmacy, Faculty of Pharmacy, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara, Indonesia, 20355
  • DELISMA SIMORANGKIR Department of Pharmacy, Faculty of Pharmacy, Institut Kesehatan Deli Husada Deli Tua, Deli Tua Timur, Deli Tua, Deli Serdang, Sumatera Utara, Indonesia, 20355
  • VONNA AULIANSHAH Department of Pharmacy, Politeknik Kesehatan Kemenkes Nanggroe Aceh Darussalam, Lampeuneurut Gampong, Darul Imarah, Aceh Besar, Aceh, Indonesia, 23352
  • FAISAL YUSUF Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Arjuna, Pintubosi, Laguboti, Toba Samosir, Sumatera Utara, Indonesia, 22381
  • TEDY KURNIAWAN BAKRI Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Syiah Kuala, Banda Aceh, Aceh, Indonesia, 23111 https://orcid.org/0000-0002-3861-8338

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43560

Keywords:

Chitosan, Crab, Shrimp, Adsorbent, Heavy metals, Dyes

Abstract

Objective: Crustacean shell waste is not currently used to its full potential. Most waste from crustaceans used in food pollutes the environment. Widely found in crab shell waste and shrimp shell waste, chitosan is a modification of chitin compounds. This study aims to utilize crustacean shell waste (crab shell waste and shrimp shell waste) as a natural adsorbent against heavy metals and dyes in the form of chitosan.

Methods: This study includes the steps of extracting chitosan from crab shell waste and shrimp shell waste, followed by adsorption capacity tests against heavy metals (mercury and arsenic) and dyes (tartrazine and amaranth).

Results: Chitosan sourced from both crab shell waste and shrimp shell waste met the physical and chemical characteristic requirements, and the yield was 28.19% and 18.33%, respectively. The adsorption capacity against heavy metals and dyes from crab shell waste chitosan ranged from 43.4% to 55.6% and the shrimp shell waste chitosan ranged from 50.8% to 60.2%.

Conclusion: Crustacean shell waste can be processed into chitosan, which is valuable and can be used as a natural adsorbent against heavy metals and dyes for wastewater treatment in several industrial sectors.

Downloads

Download data is not yet available.

References

Azra MN, Okomoda VT, Tabatabaei M, Hassan M, Ikhwanuddin M. The contributions of shellfish aquaculture to global food security: assessing its characteristics from a future food perspective. Front Mar Sci. 2021;8(4). doi: 10.3389/fmars.2021.654897, PMID 654897.

Santos VP, Marques NSS, Maia PCSV, Lima MAB, Franco LO, Campos-Takaki GM. Seafood waste as an attractive source of chitin and chitosan production and their applications. Int J Mol Sci. 2020;21(12):4290. doi: 10.3390/ijms21124290, PMID 32560250.

Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13(3):1133-74. doi: 10.3390/md13031133, PMID 25738328.

Li B, Elango J, Wu W. Recent advancement of molecular structure and biomaterial function of chitosan from marine organisms for pharmaceutical and nutraceutical application. Appl Sci. 2020;10(14):4719. doi: 10.3390/app10144719.

Ferronato N, Torretta V. Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health. 2019;16(6):1060. doi: 10.3390/ijerph16061060, PMID 30909625.

Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O. Waste management through composting: challenges and potentials. Sustainability. 2020;12(11):4456. doi: 10.3390/su12114456.

Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8(2):14. doi: 10.3389/ fpubh.2020.00014, PMID 32154200.

Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019;2019:1-14. doi: 10.1155/2019/6730305.

Ismail M, Akhtar K, Khan MI, Kamal T, Khan MA, M Asiri A, Seo J, Khan SB. Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr Pharm Des. 2019;25(34):3645-63. doi: 10.2174/ 1381612825666191021142026. PMID 31656147.

Fahimirad S, Fahimirad Z, Sillanpää M. Efficient removal of water bacteria and viruses using electrospun nanofibers. Sci Total Environ. 2021;751(1):141673. doi: 10.1016/ j.scitotenv.2020.141673.

Tan YN, Lee PP, Chen WN. Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Expr. 2020;10(1):17. doi: 10.1186/s13568-020-0954-7, PMID 31993825.

Lukum A, Paramata Y, Botutihe DN, Akume J, Sukamto K, Paramata AR. Development of bio adsorbent chitosan from shrimp shell waste to mercury absorption efficiency. IOP Conf Ser: Earth Environ Sci. 2020;589(1):012018. doi: 10.1088/1755-1315/589/1/012018.

Sowmya SR, Madhu GM, Sankannavar R, Yerragolla S. Adsorption using chitosan and Nano zerovalent iron composite material for sustainable water treatment. Mater Res Express. 2021;8(2). doi: 10.1088/2053-1591/abdb4d, PMID 024001.

Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V. Seafood waste: A source for preparation of commercially employable chitin/chitosan materials. Bioresour Bioprocess. 2019;6(1):8. doi: 10.1186/s40643-019-0243-y.

Zainol Abidin NA, Kormin F, Zainol Abidin NA, Mohamed Anuar NAF, Abu Bakar MF. The potential of insects as alternative sources of chitin: an overview on the chemical method of extraction from various sources. Int J Mol Sci. 2020;21(14):4978. doi: 10.3390/ijms21144978, PMID 32679639.

Alabaraoye E, Achilonu M, Hester R. Biopolymer (chitin) from various marine seashell wastes: isolation and characterization. J Polym Environ. 2018;26(6):2207-18. doi: 10.1007/s10924-017-1118-y.

Zhao D, Huang WC, Guo N, Zhang S, Xue C, Mao X. Two-step separation of chitin from shrimp shells using citric acid and deep eutectic solvents with the assistance of microwave. Polymers. 2019;11(3):409. doi: 10.3390/polym11030409, PMID 30960393.

Kaczmarek MB, Struszczyk Swita K, Li X, Szczeęsna Antczak M, Daroch M. Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front Bioeng Biotechnol. 2019;7(9):243. doi: 10.3389/fbioe.2019.00243, PMID 31612131.

Joseph SM, Krishnamoorthy S, Paranthaman R, Moses JA, Anandharamakrishnan C. A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydrate Polymer Technologies and Applications. 2021;2. doi: 10.1016/j.carpta.2021.100036.

Imtihani HN, Permatasari SN, Thalib FA. Solid dispersion characteristics of whiteleg shrimp (Litopenaeus vannamei) extracted chitosan with HPMC and PVP K-30 as anti-cholesterol agents. Res J Pharm Technol. 2021;14(7):3559-65. doi: 10.52711/0974-360X.2021.00616.

Fernandes Queiroz M, Melo KR, Sabry DA, Sassaki GL, Rocha HA. Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs. 2014;13(1):141-58. doi: 10.3390/md13010141. PMID 25551781.

Salami A, Vilppo T, Pitkanen S, Weisell J, Raninen K, Vepsalainen J, Lappalainen R. Cost-effective FTIR and 1H NMR spectrometry used to screen valuable molecules extracted from selected West African trees by a sustainable biochar process. Sci Afr. 2020;8(7):e00315. doi: 10.1016/ j.sciaf. 2020.e00315.sciaf.2020.e00315.

Shit SC, Shah PM. Edible polymers: challenges and opportunities. J Polym. 2014;5:1-13. doi: 10.1155/2014/427259.

Hahn T, Tafi E, Paul A, Salvia R, Falabella P, Zibek S. Current state of chitin purification and chitosan production from Iinsects. J Chem Technol Biotechnol. 2020;95(711):2775-95. doi: 10.1002/jctb.6533.

da Silva Alves DC, Healy B, de Almeida Pinto LAA, Cadaval TRSA, Breslin CB. Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments. Molecules. 2021;26(3):594. doi: 10.3390/molecules26030594, PMID 33498661.

Pestov A, Bratskaya S. Chitosan and its derivatives as highly efficient polymer ligands. Molecules. 2016;21(3):330. doi: 10.3390/molecules21030330, PMID 26978343.

Srivatsav P, Bhargav BS, Shanmugasundaram V, Arun J, Gopinath KP, Bhatnagar A. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from the aqueous environment: a review. Water. 2020;12(12):3561. doi: 10.3390/w12123561.

Chan K, Morikawa K, Shibata N, Zinchenko A. Adsorptive removal of heavy metal ions, organic dyes, and pharmaceuticals by DNA–chitosan hydrogels. Gels. 2021;7(3): 112. doi: 10.3390/gels7030112, PMID 34449623.

Published

07-03-2022

How to Cite

NERDY, N., LESTARI, P., SIMORANGKIR, D., AULIANSHAH, V., YUSUF, F., & BAKRI, T. K. (2022). COMPARISON OF CHITOSAN FROM CRAB SHELL WASTE AND SHRIMP SHELL WASTE AS NATURAL ADSORBENT AGAINST HEAVY METALS AND DYES. International Journal of Applied Pharmaceutics, 14(2), 181–185. https://doi.org/10.22159/ijap.2022v14i2.43560

Issue

Section

Original Article(s)