SELF-MICRO EMULSIFYING DRUG DELIVERY SYSTEM OF URSOLIC ACID: FORMULATION DEVELOPMENT, CHARACTERIZATION, PHARMACOKINETIC AND PHARMACODYNAMIC STUDIES FOR DIABETIC COMPLICATIONS
DOI:
https://doi.org/10.22159/ijap.2022v14i2.43692Keywords:
Bioavailability, Diabetic complications, Pharmacokinetic, Pharmacodynamic, SMEDDS, and Ursolic acidAbstract
Objective: The objective of this study was to develop, characterize, and conduct pharmacokinetic and pharmacodynamic studies on ursolic acid solid self microemulsifying drug delivery system (UA-S-SMEDDS) for the treatment of diabetic complications.
Methods: Liquid self microemulsifying drug delivery system (L-SMEDDS) were made with Capryol 90 as an oil, Cremophor EL as a surfactant, and polyethylene glycol (PEG) 400 as a co-surfactant. The surfactant and co-surfactant (Smix) ratios were calculated using a pseudo ternary phase diagram. At different pH levels and with water, the globule size, polydispersity index (PDI), zeta potential (ZP), and dilution were all assessed. S-SMEDDS has developed adsorption to a solid carrier by utilizing L-SMEEDS formulation. The powder properties, liquid retention potential, globule size, PDI, ZP, assay, and pharmacokinetic studies were all evaluated. The pharmacodynamic investigations of the S-SMEDDS formulation in streptozotocin (STZ) induced Wistar rats were evaluated using malondialdehyde (MDA) and glutathione (GSH) determination in tissues and section studies.
Results: S-SMEDDS formulation was successfully developed with a droplet size of 163.4±1.475 nm, PDI of 0.251±0.042, a ZP of-21.3±1.02, an assay of 96.21±0.75%. The release studies showed 26.28% (0.1N HCl) and 83.57% (6.8 phosphate buffer) were released in 15 min. When comparing the pharmacokinetics of a UA-loaded S-SMEDDS to the coarse suspension, the S-SMEDDS (F2A) showed a 4.12 fold improvement in UA oral bioavailability. The pharmacodynamic results showed that S-SMEDDS was a higher recovery rate.
Conclusion: The developed solid SMEDDS (F2A) formulation proved effective in treating diabetic complications in STZ induced Wistar rats by inhibiting the aldose reductase enzyme.
Downloads
References
Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci. 2016;146:201-13. doi: 10.1016/j.lfs.2016.01.017. PMID 26775565.
Liu J. Oleanolic acid and ursolic acid: research perspectives. J Ethnopharmacol. 2005;100(1-2):92-4. doi: 10.1016/j.jep.2005.05.024. PMID 15994040.
Kowalski R. Studies of selected plant raw materials as alternative sources of triterpenes of oleanolic and ursolic acid types. J Agric Food Chem. 2007;55(3):656-62. doi: 10.1021/jf0625858, PMID 17263457.
Agarwal VK, Amresh G, Chandra P. Pharmacodynamic evaluation of self micro-emulsifying formulation of standardized extract of Lagerstroemia speciosa for antidiabetic activity. J Ayurveda Integr Med. 2018;9(1):38-44. doi: 10.1016/j.jaim.2017.02.007. PMID 29229368.
Jin H, Pi J, Yang F, Wu C, Cheng X, Bai H, Huang D, Jiang J, Cai J, Chen ZW. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor. Appl Microbiol Biotechnol. 2016;100(15):6643-52. doi: 10.1007/s00253-016-7360-8, PMID 26883344.
de Oliveira Eloy J, Saraiva J, de Albuquerque S, Marchetti JM. Solid dispersion of ursolic acid in Gelucire 50/13: a strategy to enhance drug release and trypanocidal activity. AAPS PharmSciTech. 2012;13(4):1436-45. doi: 10.1208/s12249-012-9868-2, PMID 23070562.
Lee EH, Popov SA, Lee JY, Shpatov AV, Kukina TP, Kang SW, Pan CH, Um BH, Jung SH. Inhibitory effect of ursolic acid derivatives on recombinant human aldose reductase. Bioorg Khim. 2011;37(5):637-44. doi: 10.1134/S1068162011050050, PMID 22332359.
Wang L, Yin Q, Liu C, Tang Y, Sun C, Zhuang J. Nanoformulations of ursolic acid: a modern natural anticancer molecule. Front Pharmacol. 2021;12:706121. doi: 10.3389/fphar.2021.706121. PMID 34295253.
Jin H, Pi J, Yang F, Wu C, Cheng X, Bai H, Huang D, Jiang J, Cai J, Chen ZW. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor. Appl Microbiol Biotechnol. 2016;100(15):6643-52. doi: 10.1007/s00253-016-7360-8, PMID 26883344.
Cerpnjak K, Zvonar A, Vrecer F, Gasperlin M. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen. Drug Dev Ind Pharm. 2015;41(9):1548-57. doi: 10.3109/03639045.2014.971031, PMID 25308746.
Oh DH, Kang JH, Kim DW, Lee BJ, Kim JO, Yong CS, Choi HG. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with a hydrophilic and hydrophobic solid carrier. Int J Pharm. 2011;420(2):412-8. doi: 10.1016/j.ijpharm.2011.09.007. PMID 21944892.
Hasan NMy, Almalki DM, Althuwaybi MJk, Alshehri HM. SMEDDS Tablet: compatability of solid SMEDDS using various pharmaceutical tablet excipients. Int J Pharm Pharm Sci. 2016;8(9):246-51. doi: 10.22159/ijpps.2016v8i9.13409.
Yang R, Huang X, Dou J, Zhai G, Su L. Self-microemulsifying drug delivery system for improved oral bioavailability of oleanolic acid: design and evaluation. Int J Nanomedicine. 2013;8:2917-26. doi: 10.2147/IJN.S47510. PMID 23966781.
Yi T, Zhang J. Effects of hydrophilic carriers on structural transitions and in vitro properties of solid self-microemulsifying drug delivery systems. Pharmaceutics. 2019;11(6):267-75. doi: 10.3390/pharmaceutics11060267, PMID 31181811.
Sahoo SK, Suresh P, Acharya U. Design and development of self-microemulsifying drug delivery systems (SMEDDS) of telmisartan for enhancement of in vitro dissolution and oral bioavailability in rabbit. Int J App Pharm 2018;10(4). doi: 10.22159/ijap.2018v10i4.27048.
Qu D, He J, Liu C, Zhou J, Chen Y. Triterpene-loaded microemulsion using Coix lacryma-jobi seed extract as oil phase for enhanced antitumor efficacy: preparation and in vivo evaluation. Int J Nanomedicine. 2014;9:109-19. doi: 10.2147/IJN.S54796. PMID 24379669.
Dong SK, Jung HC, Jong HP, Jung SK, Eon SS, Jaewook K, Bhupendra RG, Sung GJ, Kyeong SK, Han GC, Dong WK. Self-microemulsifying drug delivery system for improved oral delivery and photostability of methotrexate. Int J Nanomedicine. 2019;14:4949-60. doi: 10.2147/IJN. S211014. PMID 31308665.
Wang L, Yan W, Tian Y, Xue H, Tang J, Zhang L. Self-microemulsifying drug delivery system of phillygenin: formulation development, characterization and pharmacokinetic evaluation. Pharmaceutics. 2020;12(2):1-17. doi: 10.3390/pharmaceutics12020130, PMID 32028742.
Czajkowska Kosnik A, Szekalska M, Amelian A, Szymanska E, Winnicka K. Development and evaluation of liquid and solid self-emulsifying drug delivery systems for atorvastatin. Molecules. 2015;20(12):21010-22. doi: 10.3390/ molecules201219745. PMID 26610464.
Kaczmarczyk Sedlak I, Folwarczna J, Sedlak L, Zych M, Wojnar W, Szuminska I, Wyględowska Promienska D, Mrukwa Kominek E. Effect of caffeine on biomarkers of oxidative stress in lenses of rats with streptozotocin-induced diabetes. Arch Med Sci. 2019;15(4):1073-80. doi: 10.5114/aoms.2019.85461, PMID 31360202.
Sermkaew N, Ketjinda W, Boonme P, Phadoongsombut N, Wiwattanapatapee R. Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata. Eur J Pharm Sci. 2013;50(3-4):459-66. doi: 10.1016/j.ejps.2013.08.006. PMID 23973887.
BN, CV. Effect of ashwagandha on pharmacokinetic and pharmacodynamic parameters of glimepiride in streptozotocin-induced diabetic rats. Asian J Pharm Clin Res 2018;11(4). doi: 10.22159/ajpcr.2018.v11i4.23960.
Kim GG, Poudel BK, Marasini N, Lee DW, Hiep TT, Yang KY, Kim JO, Yong CS, Choi HG. Enhancement of oral bioavailability of fenofibrate by solid self-microemulsifying drug delivery systems. Drug Dev Ind Pharm. 2013;39(9):1431-38. doi: 10.3109/03639045.2012.719903, PMID 23046292.
Yi T, Wan J, Xu H, Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur J Pharm Biopharm. 2008;70(2):439-44. doi: 10.1016/j.ejpb.2008.05.001. PMID 18603415.
Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)--challenges and road ahead. Drug Deliv. 2015;22(6):675-90. doi: 10.3109/10717544.2014.896058, PMID 24670091.
Cui J, Yu B, Zhao Y, Zhu W, Li H, Lou H, Zhai G. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm. 2009;371(1-2):148-55. doi: 10.1016/j.ijpharm.2008.12.009. PMID 19124065.
Liu W, Tian R, Hu W, Jia Y, Jiang H, Zhang J, Zhang L. Preparation and evaluation of self-microemulsifying drug delivery system of baicalein. Fitoterapia. 2012;83(8):1532-9. doi: 10.1016/j.fitote.2012.08.021. PMID 22982454.
Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173-82. doi: 10.1016/j.biopha.2004.02.001. PMID 15082340.
Girish S, Surabhi C, Sathish Babu P, Meenakshi S, Siddaramaiah, Nithin K, Gowda DV. Formulation and evaluation of solid self micro emulsifying dispersible tablet of piroxicam. Int J App Pharm. 2021;13(2):127-33. doi: 10.22159/ijap.2021v13i2.40238.
Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M. Antioxidant, anti-apoptotic, and protective effects of myricitrin and its solid lipid nanoparticle on streptozotocin-nicotinamide-induced diabetic nephropathy in type 2 diabetic male mice. Iran J Basic Med Sci. 2019;22(12):1424-31. doi: 10.22038/IJBMS.2019.13989, PMID 32133060.
Ciddi V, Dodda D. Therapeutic potential of resveratrol in diabetic complications: in vitro and in vivo studies. Pharmacol Rep. 2014;66(5):799-803. doi: 10.1016/j.pharep.2014.04.006. PMID 25149983.
Published
How to Cite
Issue
Section
Copyright (c) 2022 GOLLA CHANDRA MOULI, CIDDI VEERESHAM
This work is licensed under a Creative Commons Attribution 4.0 International License.