GREEN SYNTHESIS OF NANOSTRUCTURED ZINC PARTICLES USING AQUEOUS LEAF EXTRACT OF SCHREBERA SWIETENIOIDES ROXB. AND THEIR CATALYTIC APPLICATION IN DEGRADATION OF METHYL ORANGE, CRYSTAL VIOLET DYES AND CHROMIUM METAL
DOI:
https://doi.org/10.22159/ijap.2022v14i2.43697Keywords:
Zinc oxide nanoparticles, Characterization, TEM, Catalytic application, Methyl orange, Crystal violet, Chromium metal degradationAbstract
Objective: The present work was aimed to synthesized the zinc nanoparticles (ZnO NPs) using aqueous leaf extract of Schrebera swietenioides Roxb., and further, the green-synthesized ZnO NPs were studied for its efficacy in the degradation of hazardous dyes like methyl orange, crystal violet and hazardous metal such as chromium.
Methods: The ZnO NPs were synthesized using aqueous leaf extract of S. swietenioides Roxb., as a green reducing agent and 0.1 M Zinc acetate as metal source and the NPs synthesis was completed within a short period of 6 h. The ZnO NPs synthesized were characterized using SEM, TEM, EDS, XRD, FT-IR and UV-visible spectrophotometer. Further, the synthesized NPs were applied for reduction of pollutant days such as methyl orange, crystal violet and pollutant metal chromium.
Results: The synthesis of NPs was monitored by observing the color change in the reaction mixture and UV visible spectral analysis. The UV spectral analysis shows a characteristic absorption wavelength at 379 nm. The synthesized NPs were hexagonal wurtzite form crystals having a spherical shape with rough surfaces with an average size of 68 nm and having 73.7 % of zinc content. At a NPs dose of 1.0 g/l the photocatalytic reduction was observed as 85.33±0.02 %, 86.82±0.095 % and 86.73±0.104 % for crystal violet dye, methyl orange dye and chromium metal, respectively. The NPs shows a high % photocatalytic reduction of chromium metal, crystal violet dye and methyl orange dye with less contact time confirms that the synthesized ZnO NPs were effectively catalyzed the degradation of methyl orange, crystal violet dyes and chromium metal. The NPs were observed to be recyclable and can shows high reduction activity after the completion of three cycles of degradation.
Conclusion: Hence it can be concluded that synthesized greener nanocatalyst was efficient for pollutant treatment and demonstrated the power of green biosynthesis for metallic nanoparticles.
Downloads
References
Al-Zaban MI, Mahmoud MA, AlHarbi MA. Catalytic degradation of methylene blue using silver nanoparticles synthesized by honey. Saudi J Biol Sci. 2021;28(3):2007-13. doi: 10.1016/j.sjbs.2021.01.003, PMID 33732087.
Gupta M. Inorganic nanoparticles: an alternative therapy to combat drug-resistant infections. Int J Pharm Pharm Sci. 2021;13:20-31. doi: 10.22159/ijpps.2021v13i8.42643.
Chippa S, Suvarna V. Nanotechnology for detection of diseases caused by viruses-current overview. Int J Pharm Pharm Sci. 2021;13:1-7. doi: 10.22159/ijpps.2021v13i4.40359.
Helal SE, Abdelhady HM, Abou Taleb KA, Hassan MG, Amer MM. Lipase from Rhizopus oryzae R1: in-depth characterization, immobilization, and evaluation in biodiesel production. J Genet Eng Biotechnol. 2021;19(1):1. doi: 10.1186/s43141-020-00094-y. PMID 33400043.
Wahi RK, Yu WW, Liu Y, Mejia ML, Falkner JC, Nolte W, Colvin VL. Photodegradation of congo red catalyzed by nanosized TiO2. Journal of Molecular Catalysis A: Chemical. 2005;242(1-2):48-56. doi: 10.1016/j.molcata.2005.07.034.
Bianchi V, Zantedeschi A, Montaldi A, Majone F. Trivalent chromium is neither cytotoxic nor mutagenic in permeabilized hamster fibroblasts. Toxicol Lett. 1984;23(1):51-9. doi: 10.1016/0378-4274(84)90009-2, PMID 6485018.
Chiu A, Shi XL, Lee WKP, Hill R, Wakeman TP, Katz A, Xu B, Dalal NS, Robertson JD, Chen C, Chiu N, Donehower L. Review of chromium (VI) apoptosis, cell-cycle-arrest, and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2010;28(3):188-230. doi: 10.1080/10590501.2010.504980, PMID 20859824.
Das R, Sarkar S. Optical properties of silver nano-cubes. Opt Mater. 2015;48:203-8. doi: 10.1016/j.optmat.2015.07.038.
Kandula S, Jeevanandam P. Sun-light-driven photocatalytic activity by ZnO/Ag hetero nanostructures synthesized via a facile thermal decomposition approach. RSC Adv. 2015;5(93):76150-9. doi: 10.1039/C5RA14179F.
Madhiyazhagan P, Murugan K, Kumar AN, Nataraj T, Subramaniam J, Chandramohan B, Panneerselvam C, Dinesh D, Suresh U, Nicoletti M, Alsalhi MS, Devanesan S, Benelli G. One-pot synthesis of silver nanocrystals using the seaweed gracilaria edulis: biophysical characterization and potential against the filariasis vector culex quinquefasciatus and the midge chironomus circumdatus. J Appl Phycol. 2017;29(1):649-59. doi: 10.1007/s10811-016-0953-x.
Fortunato E, Barquinha P, Pimentel A, Gonçalves A, Marques A, Pereira L, Martins R. Recent advances in ZnO transparent thin film transistors. Thin Solid Films. 2005;487(1-2):205-11. doi: 10.1016/j.tsf.2005.01.066.
Xiong HM. ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater. 2013;25(37):5329-35. doi: 10.1002/adma.201301732, PMID 24089351.
Nie L, Gao L, Feng P, Zhang J, Fu X, Liu Y, Yan X, Wang T. Three-dimensional functionalized tetrapod-like ZnO nanostructures for plasmid DNA delivery. Small. 2006;2(5):621-5. doi: 10.1002/smll.200500193, PMID 17193097.
Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater. 2009;19(6):842-52. doi: 10.1002/adfm.200801081.
Vijayakumar S, Malaikozhundan B, Shanthi S, Vaseeharan B, Thajuddin N. Control of biofilm-forming clinically important bacteria by green synthesized ZnO nanoparticles and its ecotoxicity on Ceriodaphnia cornuta. Microb Pathog. 2017;107:88-97. doi: 10.1016/j.micpath.2017.03.019, PMID 28330748.
Sharma D, Rajput J, Kaith BS, Kaur M, Sharma S. Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films. 2010;519(3):1224-9. doi: 10.1016/j.tsf.2010.08.073.
Alkaladi A, Abdelazim AM, Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci. 2014;15(2):2015-23. doi: 10.3390/ijms15022015, PMID 24477262.
Balogun SW, James OO, Sanusi YK, Olayinka OH. Green synthesis and characterization of zinc oxide nanoparticles using bashful (Mimosa pudica), leaf extract: a precursor for organic electronics applications. SN Appl Sci. 2020;2(3):504. doi: 10.1007/s42452-020-2127-3.
Cavuslar Ozge, Nakay E, Kazakoglu U, Abkenar SK, Ow Yang CW, Acar HY. Synthesis of stable gold nanoparticles using linear polyethyleneimines and catalysis of both anionic and cationic azo dye degradation. Mater Adv. 2020;1(7):2407-17. doi: 10.1039/D0MA00404A.
Khoso WA, Haleem N, Baig MA, Jamal Y. Synthesis, characterization and heavy metal removal efficiency of nickel ferrite nanoparticles (NFN’s). Sci Rep. 2021;11(1):3790. doi: 10.1038/s41598-021-83363-1, PMID 33589710.
Pant A, Tanwar R, Kaur B, Mandal UK. A magnetically recyclable photocatalyst with commendable dye degradation activity at ambient conditions. Sci Rep. 2018;8(1):14700. doi: 10.1038/s41598-018-32911-3, PMID 30279537.
Pai S, HS, Varadavenkatesan T, Vinayagam R, Selvaraj R. Photocatalytic zinc oxide nanoparticles synthesis using Peltophorum pterocarpum leaf extract and their characterization. Optik. 2019;185:248-55. doi: 10.1016/j.ijleo.2019.03.101.
Barzinjy AA, Azeez HH. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl Sci. 2020;2(5):991. doi: 10.1007/s42452-020-2813-1.
Jayappa MD, Ramaiah CK, Kumar MAP, Suresh D, Prabhu A, Devasya RP, Sheikh S. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Appl Nanosci. 2020;10:1-18. doi: 10.1007/s13204-020-01382-2, PMID 32421069.
Kahsay MH. Synthesis and characterization of ZnO nanoparticles using aqueous extract of Becium grandiflorum for antimicrobial activity and adsorption of methylene blue. Appl Water Sci. 2021;11(2):45. doi: 10.1007/s13201-021-01373-w.
Thattil PP, Rose AL. Enhanced removal of crystal violet dye using zinc oxide nanorods and air oxidation under sunlight radiation. Rasayan J Chem. 2020;13(2):1166-73. doi: 10.31788/RJC.2020.1325558.
Raliya R, Avery C, Chakrabarti S, Biswas P. Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Appl Nanosci. 2017;7(5):253-9. doi: 10.1007/s13204-017-0565-z.
Wang J, Chen Y, Si P, Fan R, Yang J, Pan Y, Zhao S, Shi Y. Selective fluorescence sensing and photocatalytic properties of a silver(I)-based metal-organic framework based on 9,10-anthraquinone-1,5-dicarboxylic acid and 4,4’-bipyridine ligands. Inorg Nano Met Chem. 2020;50(1):1-7. doi: 10.1080/24701556.2019.1661447.
Published
How to Cite
Issue
Section
Copyright (c) 2022 S. LAKSHMI TULASI, A. V. V. S. SWAMY, P. PAVANI, V. SUBHASHINI
This work is licensed under a Creative Commons Attribution 4.0 International License.