OPTIMIZATION OF DILTIAZEM HYDROCHLORIDE NANOPARTICLES FORMULA AND ITS RELEASE KINETICS EVALUATION

Authors

  • LINA WINARTI Department of Pharmaceutics, Faculty of Pharmacy, University of Jember, Jln Kalimantan No. 37 Jember 68121 Indonesia
  • LUSIA OKTORA RUMA KUMALA SARI Department of Pharmaceutics, Faculty of Pharmacy, University of Jember, Jln Kalimantan No. 37 Jember 68121 Indonesia
  • EKA DEDDY IRAWAN DWI NURAHMANTO Department of Pharmaceutics, Faculty of Pharmacy, University of Jember, Jln Kalimantan No. 37 Jember 68121 Indonesia
  • VIDDY AGUSTIAN ROSYIDI Department of Pharmaceutics, Faculty of Pharmacy, University of Jember, Jln Kalimantan No. 37 Jember 68121 Indonesia
  • LIDYA AMELIANA Department of Pharmaceutics, Faculty of Pharmacy, University of Jember, Jln Kalimantan No. 37 Jember 68121 Indonesia
  • KUNI ZU’ AIMAH BARIKAH Department of Pharmaceutics, Faculty of Pharmacy, University of Jember, Jln Kalimantan No. 37 Jember 68121 Indonesia
  • REGITA ARDIA ANJARANI Department of Pharmaceutics, Faculty of Pharmacy, University of Jember, Jln Kalimantan No. 37 Jember 68121 Indonesia

DOI:

https://doi.org/10.22159/ijap.2021.v13s4.43857

Keywords:

Diltiazem hydrochloride, Chitosan, Nanoparticles, In vitro release kinetics

Abstract

Objective: The purpose of this study was to determine the optimum formula of diltiazem HCl-loaded chitosan nanoparticles due to variations in the speed and duration of stirring and evaluating the release kinetics in vitro using DDSolver.

Methods: The method used to prepare nanoparticles is ionic gelation. The ionic gelation method involves an ionic cross-linking between cations on the backbone of chitosan and anion, such as sodium tripolyphosphate (Na TPP). 

Results: Stirring speed of 1200 rpm and stirring time of 2 h produce an optimum response. The optimum formula has an entrapment efficiency of 71.10%, a particle size of 110.2 nm, and a polydispersity index of 0.268. The dry powder of diltiazem HCl nanoparticles produced a drug loading of 66.14±1.71% and a yield of 34.07±0.73%. The FT-IR showed ionic interaction (cross-linking) between ammonium ions from chitosan and phosphate ions from Na TPP. Scanning electron microscopy (SEM) analysis showed a particle size of 150 µm, a spherical shape, and rough surface morphology. In vitro release profiles indicated prolonged release, which follows the Korsmeyer Peppas model. 

Conclusion: It can be concluded that increasing the speed and duration of stirring will improve drug entrapment and reduce the particles size variation. The dry nanoparticles release mechanism is by diffusion and matrix erosion.

Downloads

Download data is not yet available.

References

Maurya AK, Gupta V, Gupta N, Shrivastav V. Development and evaluation of stable microsphere of diltiazem. Int J Pharm Life Sci;201(2):583-9.

Mardliyati E, El S, Damai R. Synthesis of chitosan-try polyphosphate nanoparticles by ionic gelation method: effect of concentration and volume ratio on particle characteristics. Proceedings of the scientific meeting of materials science and technology; 2012. p. 90-3.

Patel GB, Patel G. Ganciclovir loaded chitosan nanoparticles: preparation and nanomedicine and nanotechnology. J Nanomed Nanotechnol. 2016;7:1-8.

Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The influence of nanoparticle properties on oral bioavailability of drugs. Int J Nanomedicine. 2020;15:6295-310. doi: 10.2147/IJN.S257269, PMID 32943863.

Monharaj VJ, Chen Y. Nanoparticles. Trop J Pharm Res. 2006;5(June):561-73.

Hussain Z, Sahudin S. Preparation, characterization and colloidal stability of chitosan-tripolyphosphate nanoparticles: optimisation of formulation and process parameters. Int J Pharm Pharm Sci. 2016;8:297-308.

Shu XZ, Zhu KJ. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int J Pharm. 2002;233(1-2):217-25. doi: 10.1016/s0378-5173(01)00943-7, PMID 11897426.

Patil R, Jat RK. Formulation and evaluation of matrix tablets containing chitosan based polyelectrolyte complex with natural gum for prolonged release of diltiazem HCl. J Drug Deliv Ther. 2019;9:22-31.

A. Sailaja K, Sreelola V. Preparation and characterization of diltiazem HCL loaded bovine serum albumin nanoparticles by desolvation technique. Pharm Nanotechnol 2016;4(4):308-15. doi: 10.2174/2211738504666160519144841.

Uyanikgil EOC, Gundogdu E, Kirilmaz L. Novel microparticle drug delivery systems based on chitosan and eudragit rspm to enhance diltiazem hydrochloride release property. Pharm Dev Technol. 2011;17:1-6.

Al-Nemrawi NK, Alsharif SSM, Dave RH. Preparation of chitosan-TPP nanoparticles: the influence of chitosan polymeric properties and formulation variables. Int J App Pharm. 2018;10(5):60-5. doi: 10.22159/ijap.2018v10i5.26375.

Taurina W, Sari R, Hafinur UC, Wahdaningsih S, Isnindar. Optimization of stirring speed and stirring time toward nanoparticle size of chitosan-siam citrus peel (Citrus nobilis L. var microcarpa) 70% ethanol extract. Indonesian Trad Med. 2017;22(1):16-20.

Taetz S, Nafee N, Beisner J, Piotrowska K, Baldes C, Murdter TE, Huwer H, Schneider M, Schaefer UF, Klotz U, Lehr CM. The influence of chitosan content in cationic chitosan/PLGA nanoparticles on the delivery efficiency of antisense 2′-O-methyl-RNA directed against telomerase in lung cancer cells. Eur J Pharm Biopharm. 2009;72(2):358-69. doi: 10.1016/j.ejpb.2008.07.011, PMID 18703137.

Dangi RS, Shakya S. Preparation, optimization and characterization of PLGA nanoparticles. Int J Pharm Life Sci. 2013;4(7):2810-8.

Almalik A, Alradwan I, Kalam MA, Alshamsan A. Effect of cryoprotection on particle size stability and preservation of chitosan nanoparticles with and without hyaluronate or alginate coating. Saudi Pharm J. 2017;25(6):861-7. doi: 10.1016/j.jsps.2016.12.008, PMID 28951671.

Patel RG, Patel B, Gajra R, Parikh. Formulation optimization and characterization of ganciclovir loaded dry chitosan nanoparticles. Asian J Pharm Clin Res. 2017;10(3):8-12.

Kumar A. Editorial. Mater Technol. 2019;34(1):1-9. doi: 10.1080/10667857.2018.1507570.

Nesalin JAJ, Smith AA. Preparation and evaluation of chitosan nanoparticles containing zidovudine. Asian J Pharm Sci. 2012;7(1):80-4.

Rachmawati AL, Surini S. Formulation and characterization of xanthan gum and acacia gum crosslinked nanoparticles for insulin delivery. Pharm Sci Res. 2018;5(3):159-68.

Halanayake KD, Kalutharage NK, Hewage JW. Microencapsulation of biosynthesized zinc oxide nanoparticles (ZnO-NPs) using plumeria leaf extract and kinetic studies in the release of ZnO-NPs from microcapsules. SN Appl Sci. 2021;3(17):1-13.

Todorović N, Golocorbin-Kon S, Kermeci K, Jovicic-Bata J, Pavlovic N, Milijasevic B, Lalic-Popovic M. Influence of immediate-release tablet formulation on the dissolution profile of paracetamol. Hosp Pharm Int Multi J. 2018;5(3):705-14. doi: 10.5937/hpimj1803705T.

Prabha SG, Arya G, Chandra R, Ahmed B, Nimesh S. Effect of size on biological properties of nanoparticles employed in gene delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):83-91. doi: 10.3109/21691401.2014.913054, PMID 24866724.

Wahyono D. Characteristics of chitosan nanoparticles and their effect on particle size and coating efficiency of ketoprofen [thesis]. Bogor: IPB (Bogor Agricultural University); 2014.

Singh R, James W, Lillard Jr. Nanoparticle-based targeted drug delivery. NIH Public Access. 2012;86(3):215-23.

Gupta RB, Uday B, Kompella. Nanoparticle technology for drug delivery. New York, London: Taylor & Francis; 2006.

Chithrani BD, Chan WCW. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007;7(6):1542-50. doi: 10.1021/nl070363y, PMID 17465586.

Bhokare SG, Marathe RP. Resovustatin calcium loaded chitosan nanoparticles: preparation evaluation and in vitro release studies. Int J Appl Pharm. 2020;12:95-102.

Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48(2-3):139-57. doi: 10.1016/s0169-409x(01)00112-0. PMID 11369079.

Gao Y, Zuo J, Bou-Chacra N, Pinto Tde J, Clas SD, Walker RB, Lobenberg R. In vitro release kinetics of antituberculosis drugs from nanoparticles assessed using a modified dissolution apparatus. BioMed Res Int. 2013; 2013:136590. doi: 10.1155/ 2013/136590. PMID 23936771.

Published

11-12-2021

How to Cite

WINARTI, L., SARI, L. O. R. K., NURAHMANTO, E. D. I. D., ROSYIDI, V. A., AMELIANA, L., BARIKAH, K. Z. A., & ANJARANI, R. A. (2021). OPTIMIZATION OF DILTIAZEM HYDROCHLORIDE NANOPARTICLES FORMULA AND ITS RELEASE KINETICS EVALUATION. International Journal of Applied Pharmaceutics, 13(4), 194–199. https://doi.org/10.22159/ijap.2021.v13s4.43857

Issue

Section

Original Article(s)