DEVELOPMENT OF NILOTINIB LOADED SOLID LIPID NANOPARTICLES AND OPTIMIZATION BY CENTRAL COMPOSITE DESIGN APPROACH

Authors

  • JARPULA ARUN KUMAR Career Point University, Kota, Rajasthan 325003, India
  • D. V. R. N. BHIKSHAPATHI Career Point University, Kota, Rajasthan 325003, India https://orcid.org/0000-0002-5521-2137

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43943

Keywords:

Solid Lipid Nanoparticles (SLN), Nilotinib, Leukemia, Central composite design (CCD)

Abstract

Objective: In current research, solid lipid nanoparticles (SLN) are formulated for the anticancer drug, nilotinib, to conquer the drawbacks associated with drug including low bioavailability and solubility.

Methods: The formulation comprised of tripalmitin (lipid), poloxamer 188(surfactant) and glyceryl palmitostearate (cosurfactant) by solvent evaporation technique. The formulation and process variables of SLN were optimized by experimental design-Central composite design (CCD). The effect of drug to lipid ratio (A), concentration of Poloxamer 188 (B) and concentration of glyceryl palmitostearate(C), on particle size (Y1) and encapsulation efficiency (Y2) of SLN were evaluated. Three batches (F1-F3) of Nilotinib SLNs were formulated by desirability approach and evaluated.

Results: The mean size of all the formulations ranged between 187–198 nm, PDI between 0. 291-0.652 and zeta potential between-21.8 to to-24.7 mV indicating the wide range of size distribution and stabiliity of the formulations. The total encapsulation efficiency of SLNs ranged between 85 to 86 %. The SEM analysis revealed the spherical shape of individual particles and PXRD results indicate amorphization of drug in SLN formulation. The drug release was continued for 24 h, indicative of controlled release drug delivery.

Conclusion: From the above results it is concluded that the solubility and bioavailability of nilotinib is enhanced.

Downloads

Download data is not yet available.

References

Bhamidipati PK, Kantarjian H, Cortes J, Cornelison AM, Jabbour E. Management of imatinib-resistant patients with chronic myeloid leukemia. Ther Adv Hematol. 2013;4(2):103-17. doi: 10.1177/2040620712468289, PMID 23610618.

Xia B, Heimbach T, He H, Lin TH. Nilotinib preclinical pharmacokinetics and practical application toward clinical projections of oral absorption and systemic availability. Biopharm Drug Dispos. 2012;33(9):536-49. doi: 10.1002/bdd.1821, PMID 23097199.

Tanaka MF, Kantarjian H, Cortes J, Ohanian M, Jabbour E. Treatment options for chronic myeloid leukemia. Expert Opin Pharmacother. 2012 Apr 1;13(6):815-28. doi: 10.1517/14656566.2012.671296, PMID 22429140.

Rane SS, Anderson BD. What determines drug solubility in lipid vehicles: is it predictable? Adv Drug Deliv Rev. 2008 Mar 17;60(6):638-56. doi: 10.1016/j.addr.2007.10.015, PMID 18089295.

Markovic M, Ben-Shabat S, Aponick A, Zimmermann EM, Dahan A. Lipids and lipid-processing pathways in drug delivery and therapeutics. Int J Mol Sci. 2020 Jan;21(9):3248. doi: 10.3390/ijms21093248, PMID 32375338.

Chakraborty S, Shukla D, Mishra B, Singh S. Lipid-an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009 Sep 1;73(1):1-15. doi: 10.1016/j.ejpb.2009.06.001, PMID 19505572.

Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2-3):165-96. doi: 10.1016/s0169-409x(01)00105-3. PMID 11311991.

Bargoni A, Cavalli R, Zara GP, Fundarò A, Caputo O, Gasco MR. Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II—tissue distribution. Pharmacol Res. 2001 May 1;43(5):497-502. doi: 10.1006/phrs.2001.0813, PMID 11394943.

Cavalli R, Bargoni A, Podio V, Muntoni E, Zara GP, Gasco MR. Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin. J Pharm Sci. 2003 May 1;92(5):1085-94. doi: 10.1002/jps.10368, PMID 12712429.

De Rossi ED, Ainsa JA, Riccardi G. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev. 2006 Jan 1;30(1):36-52. doi: 10.1111/j.1574-6976.2005.00002.x, PMID 16438679.

Dingler A, Gohla S. Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J Microencapsul. 2002 Jan 1;19(1):11-6. doi: 10.1080/02652040010018056, PMID 11811752.

Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm. 2006 May 11;314(1):83-9. doi: 10.1016/j.ijpharm.2006.01.040, PMID 16563671.

Nagar M, Panwar KS, Chopra VS, Bala I, Trivedi P. Quality by design: A systematic approach to pharmaceutical development. Pharm Lett. 2010;2(2):111-30.

Kakodkar S, Sharmada S. Pharmaceutical quality-by-design (QbD): basic principles. Int J Res Methodol. 2015;1(1).

Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008 Mar 17;60(6):625-37. doi: 10.1016/j.addr.2007.10.010, PMID 18068260.

Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257-72. doi: 10.1016/j.addr.2003.12.002, PMID 15109768.

Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2-3):165-96. doi: 10.1016/s0169-409x(01)00105-3, PMID 11311991.

Myers RH, Montgomery DC, Anderson Cook CM. Response surface methodology, product and process optimization using experimental design. 4th ed. Wiley; 2016.

Grana A, Limpach A, Chauhan H. Formulation considerations and applications of solid lipid nanoparticles. Am Pharm Rev. 2013;16(1):19-25.

Shivakumar HN, Patel PB, Desai BG, Ashok P, Arulmozhi S. Design and statistical optimization of glipizide loaded lipospheres using response surface methodology. Acta Pharm. 2007;57(3):269-85. doi: 10.2478/v10007-007-0022-8, PMID 17878108.

Nazzal S, Khan MA. Response surface methodology for the optimization of ubiquinone self-nano emulsified drug delivery system. AAPS PharmSciTech. 2002;3(1):E3. doi: 10.1208/pt030103, PMID 12916956.

Pooja D, Kulhari H, Tunki L, Chinde S, Kuncha M, Grover P, Rachamalla SS, Sistla R. Nanomedicines for targeted delivery of etoposide to non-small cell lung cancer using transferrin functionalized nanoparticles. RSC Adv. 2015;5(61):49122-31. doi: 10.1039/C5RA03316K.

Barman RK, Iwao Y, Funakoshi Y, Ranneh AH, Noguchi S, Wahed MI, Itai S. Development of highly stable nifedipine solid-lipid nanoparticles. Chem Pharm Bull (Tokyo). 2014;62(5):399-406. doi: 10.1248/cpb.c13-00684, PMID 24789922.

Shen J, Burgess DJ. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 2013;3(5):409-15. doi: 10.1007/s13346-013-0129-z, PMID 24069580.

Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001 May 1;13(2):123-33. doi: 10.1016/s0928-0987(01)00095-1, PMID 11297896.

Freitas C, Muller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur J Pharm Biopharm. 1999 Mar;47(2):125-32. doi: 10.1016/s0939-6411(98)00074-5, PMID 10234536.

Begum MY, Gudipati PR. Formulation and evaluation of dasatinib-loaded solid lipid nanoparticles. Int J Pharm Pharm Sci. 2018;10(12):14. doi: 10.22159/ijpps.2018v10i12.27567.

Taraka Sunil Kumar K, Mohan Varma M, Ravi Prakash. Development and optimization of enzalutamide-loaded solid lipid nanoparticles using box–behnken design. Asian J Pharm Clin Res. 2019;12:67-76.

Sawant P, Karekar P, Waghmare K. Formulation and characterization of solid lipid nanoparticles containing ginger oil for enhancement of stability. Int J Pharm Pharm Sci. 2020 Jun;12(6):36-44. doi: 10.22159/ijpps.2020v12i6.37357.

Manoj, Padhi, Sasmita. Solid lipid nanoparticles–a review. Article, review and sarangi. Crit Rev. 2016;3:5-12.

Published

07-03-2022

How to Cite

KUMAR, J. A., & BHIKSHAPATHI, D. V. R. N. (2022). DEVELOPMENT OF NILOTINIB LOADED SOLID LIPID NANOPARTICLES AND OPTIMIZATION BY CENTRAL COMPOSITE DESIGN APPROACH. International Journal of Applied Pharmaceutics, 14(2), 172–180. https://doi.org/10.22159/ijap.2022v14i2.43943

Issue

Section

Original Article(s)