• SUBHASIS CHAKRABARTY Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, P. O Jagannathpur Kolkata 700126
  • JOYEETA BHATTACHARYA Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, P. O Jagannathpur Kolkata 700126
  • ANKIT CHOWDHURY Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, P. O Jagannathpur Kolkata 700126
  • PARTHA ROY Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, P. O Jagannathpur Kolkata 700126
  • SAJAL KUMAR JHA Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, P. O Jagannathpur Kolkata 700126



Reverse Iontophoresis, Skin, Extraction mechanism, Electro migration, Electro osmosis, Glucose monitoring, Future approach


The frequent blood glucose monitoring is highly critical in order to understand the progression of diabetes mellitus and to minimize the probabilities of associated complications. This focuses to the fabrication of a new device for individual blood glucose monitoring. However, this technology turned out to be painful owing to its finger-stick technique, resulting in compromised patient compliance and inconsistent results. A paradigm shift from invasive to non-invasive technique to combat the above-stated limitations became an attractive tool for the researchers. The evolution of reverse iontophoresis to extract the essential plasma biomarkers as well as blood glucose through the skin was the result of the extensive efforts of the researchers as a means to monitor the blood glucose levels. The technology utilises delivery of small amount of electric current through the skin to extract the target molecules. This concept has received tremendous attention in the past decade; however, the technology still needs stringent validation for widespread implementation. Thus, in the present review, we aimed to elaborate the underlying mechanism of the reverse iontophoresis technique in the evaluation of blood glucose levels through skin, its unique features and its advancements towards commercialisation, the challenges faced, additional applications and the future prospects. The review also updates about the other non-invasive glucose monitoring techniques in comparison to reverse iontophoresis.


Download data is not yet available.


Santi P, Guy RH. Reverse iontophoresis-parameters determining electro-osmotic flow. II. Electrode chamber formulation. J Control Release. 1996;42(1):29-36. doi: 10.1016/0168-3659(96)01345-4.

Pikal MJ. Transport mechanisms in iontophoresis. I. A theoretical model for the effect of electroosmotic flow on flux enhancement in transdermal iontophoresis. Pharm Res. 1990;7(2):118-26. doi: 10.1023/a:1015816532532, PMID 2308891.

Rao G, Guy RH, Glikfeld P, LaCourse WR, Leung L, Tamada J. Reverse iontophoresis: noninvasive glucose monitoring in vivo in humans. Pharm Res. 1995;12(12):1869-73. doi: 10.1023/a:1016271301814, PMID 8786958.

Potts RO, Tamada JA, Tierney MJ. Glucose monitoring by reverse iontophoresis. Diabetes Metab Res Rev. 2002;18Suppl 1:S49-53. doi: 10.1002/dmrr.210, PMID 11921430.

Wang CY, Maibach HI. Why minimally invasive skin sampling techniques? A bright scientifi c future. Cutan Ocul Toxicol. 2011;30(1):1-6. doi: 10.3109/15569527.2010.517230, PMID 20883150.

Suthakaran C, Adithan C. Therapeutic drug monitoring–concepts, methodology, clinical application and limitations. Health Admin 2006;19:22-6.

Anroop B, Ghosh B, Parcha V, Khanam J. Transdermal delivery of atenolol: effect of prodrugs and iontophoresis. Curr Drug Deliv. 2009;6(3):280-90. doi: 10.2174/156720109788680895, PMID 19604142.

Glikfi eld P, Hinz RS, Guy RF. Non-invasive sampling of biological fluids by iontophoresis. Pharm Res. 1989;11:988-90.

Marro D, Kalia YN, Delgado Charro MB, Guy RH. Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm Res. 2001;18(12):1701-8. doi: 10.1023/a:1013318412527, PMID 11785689.

Sun TP, Shieh HL, Ching CTH, Yao YD, Huang SH, Liu CM. Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring. Int J Nanomedicine. 2010;5:343-9. PMID 20517479.

Cass AE, Davis G, Francis GD, Hill HA, Aston WJ, Higgins IJ. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem. 1984;56(4):667-71. doi: 10.1021/ac00268a018, PMID 6721151.

Delgado Charro MB, Guy RH. Transdermal reverse iontophoresis of valproate: a noninvasive method for therapeutic drug monitoring. Pharm Res. 2003;20(9):1508-13. doi: 10.1023/a:1025730815971, PMID 14567648.

Pliquett U. Mechanistic studies of molecular transdermal transport due to skin electroporation. Adv Drug Deliv Rev. 1999;35(1):41-60. doi: 10.1016/s0169-409x(98)00062-3, PMID 10837688.

Merino V, Lopez A, Hochstrasser D, Guy RH. Noninvasive sampling of phenylalanine by reverse iontophoresis. J Control Release. 1999;61(1-2):65-9. doi: 10.1016/s0168-3659(99)00102-9, PMID 10469903.

Batheja P, Thakur R, Michniak B. Transdermal iontophoresis. Expert Opin Drug Deliv. 2006;3(1):127-38. doi: 10.1517/17425247.3.1.127, PMID 16370945.

Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 1997;14(12)Suppl 5:S1-85. PMID 9450510.

Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Tamborlane WV, Beck RW, Bode BW, Buckingham B, Chase HP. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359(14):1464-76. doi: 10.1056/NEJMoa0805017, PMID 18779236.

Newman JD, Turner APF. Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron. 2005;20(12):2435-53. doi: 10.1016/j.bios.2004.11.012, PMID 15854818.

Gross TM, Bode BW, Einhorn D, Kayne DM, Reed JH, White NH. Performance evaluation of the mini med continuous glucose monitoring system during patient home use. Diabetes Technol Ther. 2000;2(1):49-56. doi: 10.1089/152091500316737, PMID 11467320.

Cengiz E, Tamborlane WV. A tale of two compartments: interstitial versus blood glucose monitoring. Diabetes Technol Ther. 2009;11Suppl 1:S11-6. doi: 10.1089/dia.2009.0002, PMID 19469670.

Christiansen M, Bailey T, Watkins E, Liljenquist D, Price D, Nakamura K. A new-generation continuous glucose monitoring system: improved accuracy and reliability compared with a previous-generation system. Diabetes Technol Ther. 2013;15(10):881-8. doi: 10.1089/dia.2013.0077, PMID 23777402.

Arnold MA. Non-invasive glucose monitoring. Curr Opin Biotechnol. 1996;7(1):46-9. doi: 10.1016/s0958-1669(96)80093-0, PMID 8742375.

Bandodkar AJ, Jeerapan I, Wang J. Wearable chemical sensors: present challenges and future prospects. ACS Sens. 2016;1(5):464-82. doi: 10.1021/acssensors.6b00250.

Xu S, Zhang YH, Cho J, Lee J, Huang X, Jia L. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun. 2013;4:1543. doi: 10.1038/ncomms2553, PMID 23443571.

Giri TK, Chakrabarty S, Ghosh B. Transdermal reverse iontophoresis: A novel technique for therapeutic drug monitoring. J Control Release. 2017;246:30-8. doi: 10.1016/j.jconrel.2016.12.007.

Ching CTS, Connolly P. Reverse iontophoresis: A non-invasive technique for measuring blood lactate level. Sens Actuator B. 2008;129(1):352-8. doi: 10.1016/j.snb.2007.08.031.

Wascotte V, Rozet E, Salvaterra A, Hubert P, Jadoul M, Guy RH. Non-invasive diagnosis and monitoring of chronic kidney disease by reverse iontophoresis of urea in vivo. Eur J Pharm Biopharm. 2008;69(3):1077-82. doi: 10.1016/j.ejpb.2008.02.012, PMID 18406585.

Barre J, Didey F, Delion F, Tillement JP. Problems in therapeutic drug monitoring: free drug level monitoring. Ther Drug Monit. 1988;10(2):133-43. doi: 10.1097/00007691-198802000-00002, PMID 3289143.

Ackerman N, Berner B, Biegajski J, Chen Q, Chen H, Conn T. Glucose monitoring via reverse iontophoresis. ACS Symp S. 2000;752:273-82. doi: 10.1021/bk-2000-0752.ch027.

Sicree R, Shaw J, Zimmet P. Diabetes impaired glucose tolerance-prevalence and projections. In: Gan D, editor, Diabetes. 3rd ed. Brussels: Atlas Press International Diabetes Federation; 2006. p. 15-103.

Gao W, Emaminejad S, Nyein HYY, Challa S, Chen KV, Peck A. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature. 2016;529(7587):509-14. doi: 10.1038/nature16521, PMID 26819044.

Lee H, Song C, Hong YS, Kim MS, Cho HR, Kang T, Shin, SH Choi, T Hyeon, DH Kim. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv. 2017;3:(3):e1601314. doi: 10.1126/sciadv.1601314, PMID 28345030.

Kapil V, Milsom AB, Okorie M Maleki-Toyserkani, S Akram, F Rehman, F Arghandawi, S Pearl, V Benjamin, N Loukogeorgakis, S MacAllister, R Hobbs, AJ Webb, AJ Ahluwalia, A Kapil V, Milsom AB, Okorie M, Maleki Toyserkani S, Akram F, Rehman F. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010;56(2):274-81. doi: 10.1161/HYPERTENSIONAHA.110.153536, PMID 20585108.

Emaminejad S, Gao W, Wu E, Davies ZA, Yin Yin Nyein HYY, Challa S, Ryan HM Fahad, K Chen, Z Shahpar, S Talebi, C Milla, A Javey, RW Davis. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Sci USA. 2017;114 (18):4625-30. doi: 10.1073/pnas.1701740114, PMID 28416667.

Ota H, Chao M, Gao Y, Wu E, Tai LC, Chen K, Y Matsuoka, K Iwai, HM Fahad, W Gao, HYY Nyein, L Lin, A Javey. 3D printed “Earable” smart devices for real-time detection of core body temperature. ACS Sensors. 2017;2(7):990-7. doi: 10.1021/acssensors.7b00247, PMID 28721726.

Liu J, Liu CX, Liu HM, Jiang LY, Yang QD, Cai XX. In: Proceedings of the 2nd IEEE international conference on Nano/micro engineered and molecular systems. Bangkok, Thailand; Jan 2007. p. 16-9.

Rose DP, Ratterman ME, Griffin DK, Hou LL, Kelley Loughnane N, Naik RR, JA Hagen, I Papautsky, JC Heikenfeld. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans Biomed Eng. 2015;62(6):1457–65. doi: 10.1109/TBME.2014.2369991, PMID 25398174.

Tierney MJ, Kim HL, Burns MD, Tamada JA, Potts RO. Electroanalysis of glucose in transcutaneously extracted samples. Electroanalysis. 2000;12(9):666-71. doi: 10.1002/1521-4109(200005)12:9<666::AID-ELAN666>3.0.CO;2-C.

Wang J. Electrochemical glucose biosensors. Chem Rev. 2008;108(2):814-25. doi: 10.1021/cr068123a, PMID 18154363.

Ching TS, Connolly P. Simultaneous transdermal extraction of glucose and lactate from human subjects by reverse iontophoresis. International Journal of Nanomedicine. 2008;3(2):211-23. doi: 10.2147/ijn.s1728, PMID 18686780.

Islam MT, Rodriguez Hornedo N, Ciotti S, Ackermann C, Rodra¬guez Hornedo N, Ciotti S, Ackermann C. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm Res. 2004;21(7):1192-9. doi: 10.1023/b:pham.0000033006.11619.07, PMID 15290859.

Sunitha Reddy M, Ranjith Kumar M, Kumar KS, Anil Goli P, Kumar S. Review on needle free drug delivery systems. Int J Rev Life Sci. 2011;1:76-82.

Karyakin AA. Prussian Blue, Its analogues: electrochemistry and analytical applications. Electroanalysis. 2001;103(10):813-9. doi: 10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z.

Jia W, Bandodkar A, J Valdes Ramirez, G Windmiller, JR Yang, Z Ramirez, J Chan, G WangJia, Bandodkar AJ, Valdes Ramirez G, Windmiller JR, Yang Z, Ramirez J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem. 2013;85(14):6553-60. doi: 10.1021/ac401573r, PMID 23815621.

Bandodkar AJ, Hung VWS Jia, W Valdes Ramirez, G Windmiller, JR Martinez, AG Ramirez, J Chan, G Kerman, K Wang Bandodkar AJ, Hung VW, Jia W, Valdes Ramirez G, Windmiller JR, Martinez AG. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst. 2013;138(1):123-8. doi: 10.1039/c2an36422k, PMID 23113321.

Bandodkar AJ, Wang Bandodkar AJ, Wang J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 2014;32(7):363-71. doi: 10.1016/j.tibtech.2014.04.005, PMID 24853270.

Rogers JA, Someya T, Huang YG. Materials and mechanics for stretchable electronics. Science. 2010;327(5973):1603-7. doi: 10.1126/science.1182383, PMID 20339064.

Windmiller JR, Wang J. Wearable electrochemical sensors and biosensors: a review. Electroanalysis. 2013;25(1):29-46. doi: 10.1002/elan.201200349.

Ramachandran A, Snehalatha C, Satyavani K, Vijay V. Impaired fasting glucose and impaired glucose tolerance in urban population in India, Diabetes. Diabet Med. 2003;20(3):220-4. doi: 10.1046/j.1464-5491.2003.00904.x, PMID 12675667.

Pang C, Lee C, Suh KY. Recent advances in flexible sensors for wearable and implantable devices. J Appl Polym Sci. 2013;3130(1303):1429-41. doi: 10.1002/app.39461.

Nunnold T, Colberg SR, Herriott MT, Somma CT. Use of the noninvasive gluco watch biographer during exercise of varying intensity. Diabetes Technol Ther. 2004;6(4):454-62. doi: 10.1089/1520915041705848, PMID 15320999.

Scott ER, Phipps B, Gyory R, Padmanabhan RV. Electrotransport system for trans-dermal delivery: a practical implementation of iontophoresis. In: Wise DL, (Ed. editor), Handbook of pharmaceutical. New York: Controlled Release Communications Technology, Marcel Dekker. New York; 2000. p. 617-59.

Zhu H, Li SK, Peck KD, Miller DJ, Higuchi WI. Improvement on conventional constant current DC iontophoresis: a study using constant conductance AC iontophoresis. J Control Release. 2002;82(2-3):249-61. doi: 10.1016/s0168-3659(02)00107-4, PMID 12175741.

Murthy SN, Sen A, Hui SW. Surfactant-enhanced transdermal delivery by electroporation. J Control Release. 2004;98(2):307-15. doi: 10.1016/j.jconrel.2004.05.006, PMID 15262421.

Some IT, Bogaerts P, Hanus R, Hanocq M, Dubois J. Incorporating batch effects in the estimation of drug stability parameters using an arrhenius model. Int J Pharm. 1999;184(2):165-73. doi: 10.1016/s0378-5173(99)00017-4, PMID 10387945.

Zorec B, Becker S, Rebersek M, Miklavcic D, Pavselj N. Skin electroporation for transdermal drug delivery: the influence of the order of different square wave electric pulses. Int J Pharm. 2013;457(1):214-23. doi: 10.1016/j.ijpharm.2013.09.020, PMID 24076397.

Tokudome Y, Sugibayashi K. The synergic effects of various electrolytes and electroporation on the in vitro skin permeation of calcein. J Control Release 2003;92(1-2):93-101. doi: 10.1016/s0168-3659(03)00307-9, PMID 14499188.

McGarraugh G. The chemistry of commercial continuous glucose monitors. Diabetes Technol Ther. 2009;11Suppl 1:S17-S24. doi: 10.1089/dia.2008.0133, PMID 19469674.

Wascotte V, Delgado Charro MB, Rozet E, Wallemacq P, Hubert P, Guy RH, V Preat. Monitoring of urea and potassium by reverse iontophoresis in vitro. Pharm Res. 2007;24(6):1131-7. doi: 10.1007/s11095-007-9237-0, PMID 17380270.

Burnette RR, Ongpipattanakul B. Characterization of the permselective properties of excised human skin during iontophoresis. J Pharm Sci. 1987;76(10):765-73. doi: 10.1002/jps.2600761003. PMID 3123641.

Cross SE, Roberts MS. Importance of dermal blood supply and epidermis on the transdermal iontophoretic delivery of monovalent cations. J Pharm Sci. 1995;84(5):584-92. doi: 10.1002/jps.2600840513, PMID 7658349.

Pierce AW. Salicylate intoxication. Postgrad Med. 1970;48(3):243-9. doi: 10.1080/00325481.1970.11693567, PMID 5311777.

Anroop B, Ghosh B, Parcha V, Khanam J. Comparative skin permeability of metoprolol tartrate and its ester prodrugs by passive permeation and iontophoresis. Asian Journal of Pharmaceutical Sciences. 2008;3(2):47-57.

Seiieg A, Jeanneret F, Fathi M, Hochstrasser D, Rudaz S, Veuthey JL F, Jeanneret M, Fathi D, Hochstrasser S, Rudaz JL. Extraction of amino acids by reverse iontophoresis in vivo. Eur J Pharm Biopharm. 2009;72(1):226-31. doi: 10.1016/j.ejpb.2008.12.012, PMID 19347973.

Ledger PW. Skin biological issues in electrically enhanced transdermal delivery. Adv Drug Deliv Rev. 1992;9(2-3):289-307. doi: 10.1016/0169-409X(92)90027-N.

Thong HY, Zhai H, Maibach HI. Percutaneous penetration enhancers: an overview. Skin Pharmacol Physiol. 2007;20(6):272-82. doi: 10.1159/000107575, PMID 17717423.

Pikal MJ. The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev. 2001;46(1-3):281-305. doi: 10.1016/s0169-409x(00)00138-1. PMID 11259844.

Mori K, Watanabe T, Hasegawa T, Sato H, Sugibayashi K, Morimoto T. Electroporation on the in vitro skin permeation of mannitol. Drug Deliv Syst. 1999;14:101-6.

Chen G, McAlister FA, Walker RL, Hemmelgarn BR, Campbell NR. Cardiovascular out comes in Framingham participants with diabetes: the importance of blood pressure. Hypertension. 2011;57(5):891-97. doi: 10.1161/HYPERTENSIONAHA.110.162446, PMID 21403089.

Smita Kolhe S, Sneha Sontakke S. A review on needle free drug delivery system. Int J Curr Pharm Res. 2013;2:30-6.

Li GL, Van der Geest R, Chanet L, van Zanten EV, Danhof M, Bouwastra JA. In vitro iontophoresis of R-apomorphine across human stratum corneum. Structure-transport relationship of penetration enhancement. J Control Release. 2002;84(1-2):49-57. doi: 10.1016/s0168-3659(02)00259-6, PMID 12399167.

Sieg A, Jeanneret F, Fathi M, Hochstrasser D, Rudaz S, Veuthey JL. Extraction of amino acids by reverse iontophoresis: simulation of therapeutic monitoring in vitro. Eur J Pharm Biopharm. 2008;70(3):908-13. doi: 10.1016/j.ejpb.2008.07.003. PMID 18675906.

Barrett DA, Rutter N. Transdermal delivery and the premature neonate. Crit Rev Ther Drug Carrier Syst. 1994;11(1):1-30. PMID 7704917.

Leboulanger B, Guy RH, Delgado Charro CMB. Reverse iontophoresis for non-invasive transdermal monitoring. Physiol Meas. 2004;25(3):R35-R50. doi: 10.1088/0967-3334/25/3/r01, PMID 15253111.

Pitzer KR, Desai S, Dunn T, Edelman S, Jayalakshmi Y, Kennedy J. Detection of hypoglycemia with the glucowatch biographer. Diabetes Care. 2001;24(5):881-5. doi: 10.2337/diacare.24.5.881, PMID 11347748.

SL Wilkins, E Atanasov, P Luo Xie S, Wilkins E, Atanasov P. Towards an implantable and refillable glucose sensor based on oxygen electrode principles. Sensors and Actuators B. 1994;17(2):133-42. doi: 10.1016/0925-4005(94)87041-1.

Nixon S, Sieg A, Delgado Charro MB, Guy RH. Reverse iontophoresis of L-lactate: in vitro and in vivo studies. J Pharm Sci. 2007;96(12):3457-65. doi: 10.1002/jps.20989, PMID 17506512.

Ribet F, Stemme G, Roxhed N. Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed Microdevices. 2018;20(4):101. doi: 10.1007/s10544-018-0349-6, PMID 30523421.

Barathi P, Thirumalraj B, Chen S, Angaiah S. A simple and flexible enzymatic glucose biosensor using chitosan entrapped mesoporous carbon nanocomposite. Microchem J. 2019;147:848-56. doi: 10.1016/j.microc.2019.03.083.

Houser TA, Sebranek JG, Thacker BJ, Baas TJ, Nilubol D, Thacker EL. Effectiveness of transdermal, needle-free injections for reducing pork carcass defects. Meat Sci. 2004;68(2):329-32. doi: 10.1016/j.meatsci.2004.03.016. PMID 22062244.

Maruo K, Tsurugi M, Jakusei Chin, Ota T, Arimoto H, Yamada Y. Noninvasive blood glucose assay using a newly developed near-infrared system. IEEE J Select Topics Quantum Electron. 2003;9(2):322-30. doi: 10.1109/JSTQE.2003.811283.

Kasahara R, Kino S, Soyama S, Matsuura Y. Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers. Biomed Opt Express. 2018;9(1):289-302. doi: 10.1364/BOE.9.000289, PMID 29359104.

McNichols RJ, Cotee GL. Optical glucose sensing in biological fluids: an overview. J Biomed Opt. 2000;5(1):5-16. doi: 10.1117/1.429962, PMID 10938760.

Malik BH, Pirnstill CW, Cote GL. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms. J Biomed Opt. 2013;18(1):17007. doi: 10.1117/1.JBO.18.1.017007, PMID 23299516. JBO.18.1.017007.

Yang D, Afroosheh S, Lee JO, Cho H, Kumar S, Siddique RH, Narasimhan V, Yoon YZ, Zayak AT, Choo H. Glucose sensing using surface-enhanced raman-mode constraining. Anal Chem. 2018;90:14269–78. doi: 10.1021/acs.analchem.8b03420.

Chen L, Tse WH, Chen Y, McDonald MW, Melling J, Zhang JH, Chen Y, McDonald MW, Melling J, Zhang J. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism. Biosens Bioelectron. 2017;91:393-9. doi: 10.1016/j.bios.2016.12.044, PMID 28063388.

De Pretto LR, Yoshimura TM, Ribeiro MS, Zanardi de Freitas A. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches. J Biomed Opt. 2016;21(8):86007. doi: 10.1117/1.JBO.21.8.086007, PMID 27533444.

Hofmann M, Fischer G, Weigel R, Kissinger D. Microwave-based noninvasive concentration measurements for biomedical applications. IEEE Trans Microwave Theory Techn. 2013;61(5):2195-204. doi: 10.1109/TMTT.2013.2250516.

Choi H, Naylon J, Luzio S, Beutler J, Birchall J, Martin C, Porch A. Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor. IEEE Trans Microw Theory Tech. 2015;63:3016-25. doi: 10.1109/TMTT.2015.2472019, PMID 26568639.

Ren T, Wang X, Yang PH. Vaccine and needle-free vaccination delivery system. J Microb Biochem Technol. 2014;6:359-60.

Vrba J, Karch J, Vrba D. Phantoms for development of microwave sensors for noninvasive blood glucose monitoring. Int J Antennas Propag. 2015;2015:1-5. doi: 10.1155/2015/570870.



How to Cite




Review Article(s)