FORMULATION AND OPTIMIZATION OF CERITINIB LOADED NANOBUBBLES BY BOX-BEHNKEN DESIGN

Authors

  • PONNAGANTI MURALIKRISHNA Shridhar University, Chirava Pilani road, Pilani 333031, Rajasthan, India
  • ANCHA KISHORE BABU Raffles University, Japanese zone, NH 8, Neemrana 301020, Rajasthan, India
  • PALANATI MAMATHA Teegala Ram Reddy College of Pharmacy, Pragathi Colony, Meerpet, Hyderabad 500097, Telangana, India

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44388

Keywords:

Ceritinib, Lung cancer, Chitosan nanobubbles, Box-Behnken design, In vitro cellular uptake study, In vitro cytotoxicity study

Abstract

Objective: Ceritinib is an anaplastic lymphoma kinase (ALK) inhibitor used to treat lung cancer. In the current research, the ceritinib-loaded nanobubbles were prepared by using perfluorobutane for inner core and medium molecular weight chitosan for the shell.

Methods: A 33Box-Behnken design was used to determine the influence of L-α-Phosphatidylcholine (A), the concentration of chitosan (B) and concentration of palmitic acid (C) factors affecting particle size, and polydispersity index. The individual effects of these factors on particle size and polydispersity index were depicted in perturbation plot, response surfaces and counterplots based on Derringer’s desirability approach.

Results: The extreme desirability function value was obtained at A: 1.31 % w/v, B: 3.00 % w/v, C: 1.5 % W/V. Three batches of formulation were prepared in accordance to the desirability function and evaluated. TEM images revealed the superficial morphology and core-shell structure of nanobubbles in the size range of 150-200 nm. Nanobubbles were able to load ceritinib with an encapsulation efficiency of 79.12 % and a loading capacity of 19.2 %. The nanobubbles released about 95.67 % drug in 24h. The in vitro cellular uptake study results show the enhanced cellular uptake of ceritinib with ultrasound from nanobubbles. In vitro cytotoxicity study results indicated that ultrasound-assisted nanobubbles can effectively release in the cells with high sensitivity.

Conclusion: Chitosan-based ceritinib nanobubbles, therefore, offer a remarkable tool for the development of ultrasound-responsive formulations that deliver drugs to the target.

Downloads

Download data is not yet available.

References

Joshi V, Sulthana F, Ramadas D. Oral delivery of silver nanoparticles– a review. Asian J Pharm Clin Res. 2021;14(11):9-14. doi: 10.22159/ajpcr.2021.v14i11.42986.

Bhowmik H, Nagasamy Venkatesh D, Kuila A, Kammari Harish Kumar N. A review. Int J Appl Pharm. 2018;10(4):207-1.

Hussain M, Sarma A, Rahman SS, Siddique AM, Eeswari TP. Formulation and evaluation of ethambutol polymeric nanoparticles. Int J App Pharm. 2020;12(4):207-17. doi: 10.22159/ijap.2020v12i4.36845.

Cavalli R, Soster M, Argenziano M. Nanobubbles: a promising efficient tool for therapeutic delivery. Ther Deliv. 2016 Feb;7(2):117-38. doi: 10.4155/tde.15.92, PMID 26769397.

Cavalli R, Bisazza A, Lembo D. Micro- and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm. 2013;456(2):437-45. doi: 10.1016/j.ijpharm.2013.08.041, PMID 24008081.

Fontana D, Ceccon M, Gambacorti Passerini C, Mologni L. Activity of second‐generation ALK inhibitors against crizotinib‐resistant mutants in an NPM‐ALK model compared to EML4‐ALK. Cancer Med. 2015 Jul;4(7):953-65. doi: 10.1002/cam4.413, PMID 25727400.

Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, Michellys PY, Awad MM, Yanagitani N, Kim S, Pferdekamper AC, Li J, Kasibhatla S, Sun F, Sun X, Hua S, McNamara P, Mahmood S, Lockerman EL, Fujita N, Nishio M, Harris JL, Shaw AT, Engelman JA. The ALK inhibitor ceritinib overcomes crizotinib resistance in non–small cell lung cancer. Cancer Discov. 2014 Jun 1;4(6):662-73. doi: 10.1158/2159-8290.CD-13-0846, PMID 24675041.

Li D, Wu X, Yu X, Huang Q, Tao L. Synergistic effect of non-ionic surfactants tween 80 and PEG6000 on cytotoxicity of insecticides. Environ Toxicol Pharmacol. 2015;39(2):677-82. doi: 10.1016/j.etap.2014.12.015, PMID 25699500.

Ramot Y, Haim Zada M, Domb AJ, Nyska A. Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev. 2016;107:153-62. doi: 10.1016/j.addr.2016.03.012, PMID 27058154.

Ravi Kumar MNVR. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1-27. doi: 10.1016/S1381-5148(00)00038-9.

Van LA, Knoop RJ, Kappen FH, Boeriu CG. Chitosan films and blends for packaging material. Carbohydr Polym. 2015;116:237-42.

Roy RK. A primer on the Taguchi method. Society of Manufacturing Engineers; 2010.

Dhiman S, Verma S. Optimization of melt-in-mouth tablets of levocetirizine dihydrochloride using response surface methodology. Int J Pharm Pharm Sci. 2012;4.

Nazzal S, Khan MA. Response surface methodology for the optimization of ubiquinone self-nano emulsified drug delivery system. AAPS PharmSciTech. 2002 Mar;3(1):E3. doi: 10.1208/pt030103, PMID 12916956.

Zhang X, Wang Q, Wu Z, Tao D. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles. Int J Miner Metall Mater. 2020;27(2):152-61. doi: 10.1007/s12613-019-1936-0.

Uchida T, Oshita S, Ohmori M, Tsuno T, Soejima K, Shinozaki S, Take Y, Mitsuda K. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater. Nanoscale Res Lett. 2011;6(1):295. doi: 10.1186/1556-276X-6-295, PMID 21711798.

Marano F, Argenziano FR, AAdamini, Bosco, Rinella L, Fortunati N, Cavalli R, Catalano MG. Doxorubicin-loaded nanobubbles combined with extracorporeal shock waves: basis for a new drug delivery tool in anaplastic thyroid cancer. Thyroid. 2016;26:705–16.

Chandralingam R. An investigation of nanobubbles in aqueous solutions for various applications. Appl Nanosci. 2018;8(2):1557-67. doi: 10.1007/s13204-018-0831-8.

Lentacker I, De Smedt SC, Sanders NN. Drug-loaded microbubble design for ultrasound-triggered delivery. Soft Matter. 2009;5(11):2161-70. doi: 10.1039/b823051j.

Batchelor DVB, Abou-Saleh RH, Coletta PL, McLaughlan JR, Peyman SA, Evans SD. Nested nanobubbles for ultrasound-triggered drug release. ACS Appl Mater Interfaces. 2020;12(26):29085-93. doi: 10.1021/acsami. 0c07022, PMID 32501014.

Park B, Yoon S, Choi Y, Jang J, Park S, Choi J. Stability of engineered micro or nanobubbles for biomedical applications. Pharmaceutics. 2020;12(11):1089. doi: 10.3390/pharmaceutics12111089, PMID 33202709.

Oh SH, Kim JM. Generation and stability of bulk nanobubbles. Langmuir. 2017;33(15):3818-23. doi: 10.1021/acs. langmuir.7b00510, PMID 28368115.

Halina, Kizek, Rene A. Rapid method for the detection of sarcosine using SPIONs/Au/CS/SOX/NPs for prostate cancer sensing. Uhlirova, Dagmar and Stankova, Martina and Docekalova, Michaela and Hosnedlová, Božena and Kepinska, Marta and Ruttkay-Nedecky, Branislav and Ruzicka, Josef and Fernández, Carlos and Milnerowicz. Int J Mol Sci. 2018;19:3722.

Tomar J, Rastogi V, Garg PC. In vitro cytotoxicity assay of crude extract of ethnobotanical mixtures used in the indigenous treatment of tuberculosis. Int J Pharm Clin Res. 2021;14(1):9-14.

Kishore Babu A, Bhanu Teja B, Ramakrishna B, Balagangadhar B, Vijay Kumar V, Venkat Reddy V. Formulation and evaluation of double-walled microspheres loaded with pantoprazole, IJRPC. 2011;1(4):770-9.

Mamatha P, Arun Kumar J, Bhikshapathi DVRN. Design and optimization of Ibrutinib solid lipid nanoparticles using design of experiment, IJBPAS. 2021;10(9):723-37.

Hoven VP, Tangpasuthadol V, Angkitpaiboon Y, Vallapa N, Kiatkamjornwong S. Surface-charged chitosan: preparation and protein adsorption. Carbohydr Polym. 2007 Mar 1;68(1):44-53. doi: 10.1016/j.carbpol.2006.07.008.

Published

07-07-2022

How to Cite

MURALIKRISHNA, P., BABU, A. K., & MAMATHA, P. (2022). FORMULATION AND OPTIMIZATION OF CERITINIB LOADED NANOBUBBLES BY BOX-BEHNKEN DESIGN. International Journal of Applied Pharmaceutics, 14(4), 219–226. https://doi.org/10.22159/ijap.2022v14i4.44388

Issue

Section

Original Article(s)