A REVIEW ON GREEN-SYNTHESIS OF CERIUM OXIDE NANOPARTICLES: FOCUS ON CENTRAL NERVOUS SYSTEM DISORDERS

Authors

  • P. SRIRAMCHARAN Department of Pharmaceutics, JSS Academy of Higher Education and Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamilnadu, India
  • JAWAHAR NATARAJAN Department of Pharmaceutics, JSS Academy of Higher Education and Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamilnadu, India
  • RAJESHKUMAR RAMAN Department of Biotechnology, JSS Academy of Higher Education and Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamilnadu, India
  • G. NAGARAJU Department of Chemistry Siddaganga Institute of Technology, Tumkur, Karnataka India
  • A. JUSTIN Department of Pharmacology, JSS Academy of Higher Education and Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamilnadu, India
  • V. SENTHIL Department of Pharmaceutics, JSS Academy of Higher Education and Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamilnadu, India

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44487

Keywords:

Green synthesis, Cerium oxide nanoparticles, Plants, Microorganisms, Reactive oxygen species, Antioxidant, Central nervous disorders

Abstract

Green Synthesized Cerium oxide nanoparticles (CeO2NPs) have sparked a lot of interest in numerous disciplines of science and Technology during the past decade. A wide range of biological resources has been employed in synthesizing CeO2NPs, including plants, microorganisms, and other biological products. Biosynthesis procedures, current knowledge, and prospects in the synthesis of Green synthesis of CeO2NPs are also discussed. Neurodegenerative diseases, such as aging, trauma, Alzheimer's and Parkinson's, and other neurological problems, are linked to higher oxidative stress and superoxide radicals generation. Cerium oxide nanoparticles' antioxidant properties suggest that they may be useful in the treatment of CNS diseases. The biological antioxidant benefits of cerium oxide nanoparticles on extending cell and organism lifespan, preventing a free radical attack, and preventing trauma-induced neurological damage are discussed in this section. CeO2NPs, an aspect of nanotechnology, would emerge as a novel drug delivery carrier through therapeutic strategies. In several diseases oxidative stress and inflammation. CeO2NPs exhibited a remarkable ability to switch between+3 and+4 oxidation states making this an efficient therapeutic option and an effective drug delivery agent. Further Reactive oxygen and nitrogen species. The overall goal of this study is to provide reasonable insight into CeO2NPs as new therapeutic agents and to solve the challenges, of safely and effectively employing these CeO2NPs for efficient management of Central Nervous System diseases.

Downloads

Download data is not yet available.

References

Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117-71. doi: 10.1016/S0140-6736(14)61682-2, PMID 25530442.

Catala Lopez F, Genova Maleras R, Vieta E, Tabares Seisdedos R. The increasing burden of mental and neurological disorders. Eur Neuropsychopharmacol. 2013;23(11):1337-9. doi: 10.1016/j.euroneuro.2013.04.001. PMID 23643344.

DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1603-58. doi: 10.1016/S0140-6736(16)31460-X, PMID 27733283.

Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545-602. doi: 10.1016/S0140-6736(16)31678-6, PMID 27733282.

Atun R. Transitioning health systems for multimorbidity. Lancet. 2015;386(9995):721-2. doi: 10.1016/S0140-6736(14)62254-6, PMID 26063473.

Wallace E, Salisbury C, Guthrie B, Lewis C, Fahey T, Smith SM. Managing patients with multimorbidity in primary care. BMJ (Clin Res Ed). 2015;350:h176. doi: 10.1136/bmj.h176. PMID 25646760.

Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37-43. doi: 10.1016/S0140-6736(12)60240-2, PMID 22579043.

Cui X, Liew Z, Hansen J, Lee PC, Arah OA, Ritz B. Cancers preceding Parkinson’s disease after adjustment for bias in a Danish population-based case-control study. Neuroepidemiology. 2019;52(3-4):136-43. doi: 10.1159/000494292, PMID 30661072.

Plantone D, Renna R, Sbardella E, Koudriavtseva T. Concurrence of multiple sclerosis and brain tumors. Front Neurol. 2015 Mar 4;6:40. doi: 10.3389/fneur.2015.00040, PMID 25788892.

Melamed E, Lee MW. Multiple sclerosis and cancer: the Ying-Yang effect of disease modifying therapies. Front Immunol. 2019;10:2954. doi: 10.3389/fimmu.2019.02954, PMID 31998289.

Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell. 2014 Mar;26(3):1069-80. doi: 10.1105/tpc.113.120642, PMID 24610725.

Markkanen E, Meyer U, Dianov GL. DNA damage and repair in schizophrenia and autism: implications for cancer comorbidity and beyond. Int J Mol Sci. 2016 Jun 1;17(6):856. doi: 10.3390/ijms17060856, PMID 27258260.

Liu R, Gao X, Lu Y, Chen H. Meta-analysis of the relationship between Parkinson disease and melanoma. Neurology. 2011;76(23):2002-9. doi: 10.1212/WNL.0b013e31821e554e, PMID 21646627.

Perez Herrero E, Fernandez Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015 Jun;93:52-79. doi: 10.1016/j.ejpb.2015.03.018, PMID 25813885.

Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018 Apr 3;9:1050-74. doi: 10.3762/bjnano.9.98, PMID 29719757.

Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine (London, England). 2013;8(9):1483-508. doi: 10.2217/nnm.13.133, PMID 23987111.

He L, Su Y, Lanhong J, Shi S. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: a review. J Rare Earths. 2015;33(8):791-9. doi: 10.1016/S1002-0721(14)60486-5.

Walkey C, Das S, Seal S, Erlichman J, Heckman K, Ghibelli L, Traversa E, McGinnis JF, Self WT. Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ Sci Nano. 2015;2(1):33-53. doi: 10.1039/C4EN00138A, PMID 26207185.

Rajeshkumar S, Naik P. Synthesis and biomedical applications of Cerium oxide nanoparticles- A review. Biotechnol Rep (Amst). 2018;17:1-5. doi: 10.1016/j.btre.2017.11.008. PMID 29234605.

Magudieshwaran R, Ishii J, Raja KCN, Terashima C, Venkatachalam R, Fujishima A. Green and chemical synthesized CeO2 nanoparticles for photocatalytic indoor air pollutant degradation. Mater Lett. 2019;239:40-4. doi: 10.1016/j.matlet.2018.11.172.

Arunachalam T, Karpagasundaram M, Rajarathinam N. Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties. Mater Sci Pol. 2017;35(4):791-8. doi: 10.1515/msp-2017-0104.

Darroudi M, Sarani M, Reza Kazemi Oskuee AK Zak, AliHosseini H, Leila Gholami. Green synthesis and evaluation of metabolic activity of starch mediated nanoceria. Ceram Int. 2014;40(1):2041-5. doi: 10.1016/j.ceramint.2013.07.116

Kannan SK, Sundrarajan M. A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int J Nanosci. 2014;13(3). doi: 10.1142/S0219581X14500185, PMID 1450018.

Korotkova АM, Borisovna PO, Aleksandrovna GI, Bagdasarovna KD, Vladimirovich BD, Vladimirovich KD, Alexandrovich FA, Yurievna KM, Nikolaevna BE, Aleksandrovich KD, Yurievich CM, Valerievich LS. "Green” Synthesis of cerium oxide particles in water extracts petroselinum crispum. Curr Nanomater;4(3):176-90. doi: 10.2174/2405461504666190911155421.

Renganathan S, Saranyaadevi K, Subha V, Ramaswami Sachidanandan ER. Green synthesis and characterization of silver nanoparticle using leaf extract of Capparis zeylanica. Asian J Pharm Clin Res. 2014;7 Suppl 2:44-8.

Kumar KM, Mahendhiran M, Diaz MC, Hernandez Como N, Hernandez Eligio A, Torres Torres G, Godavarthi S, Gomez LM. Green synthesis of CE3+rich CeO2 nanoparticles and its antimicrobial studies. Mater Lett. 2018;214:15-9. doi: 10.1016/j.matlet.2017.11.097.

Maqbool Q, Nazar M, Naz S, Hussain T, Jabeen N, Kausar R, Anwaar S, Abbas F, Jan T. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int J Nanomedicine. 2016;11:5015-25. doi: 10.2147/IJN.S113508. PMID 27785011.

Pandiyan N, Murugesan B, Sonamuthu J, Samayanan S, Mahalingam S. Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: enhancement of its bio-medical properties. J Photochem Photobiol B. 2018;178:481-8. doi: 10.1016/j.jphotobiol.2017.11.036. PMID 29232572.

Charbgoo F, Ahmad MB, Darroudi M. Cerium oxide nanoparticles: green synthesis and biological applications. Int J Nanomedicine. 2017;12:1401-13. doi: 10.2147/IJN.S124855. PMID 28260887.

Dutta D, Mukherjee R, Patra M, Banik M, Dasgupta R, Mukherjee M. Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm. Colloids and Surfaces B Biointerfaces. 2016;147:4553. doi: 10.1016/j.colsurfb.2016.07.045.

Miri A, Darroudi M, Sarani M. Biosynthesis of cerium oxide nanoparticles and its cytotoxicity survey against colon cancer cell line. Appl Organometal Chem. 2020;34(1). doi: 10.1002/aoc.5308.

Gopinath K, Karthika V, Sundaravadivelan C, Gowri S, Arumugam A. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J Nanostruct Chem. 2015;5(3):295-303. doi: 10.1007/s40097-015-0161-2.

Elahi B, Mirzaee M, Darroudi M, Kazemi Oskuee R, Sadri K, Amiri MS. Preparation of cerium oxide nanoparticles in salvia macrosiphon boiss seeds extract and investigation of their photo-catalytic activities. Ceram Int. 2019;45(4):4790-7. doi: 10.1016/j.ceramint.2018.11.173.

Nadeem M, Tungmunnithum D, Hano C, Abbasi BH, Hashmi SS, Ahmad W, Zahir A. The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chem Lett Rev. 2018;11(4):492-502. doi: 10.1080/17518253.2018.1538430.

Nadeem M, Abbasi BH, Younas M, Ahmad W, Khan T. A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem Lett Rev. 2017;10(4):216-27. doi: 10.1080/17518253.2017.1349192.

Krishnadhas L, RS, SA. Green synthesis of silver nanoparticles from the leaf extract of volkameriainermis. Int J Pharm Clin Res 2017;9(8). doi: 10.25258/ijpcr.v9i08.9587.

Maensiri S, Labuayai S, Laokul P, Klinkaewnarong J, Swatsitang E. Structure and optical properties of CeO2nanoparticles prepared by using lemongrass plant extract solution. Japan J Appl Phys. 2014;53(6S):06JG14. doi: 10.7567/JJAP.53.06JG14.

Miri A, Sarani M. Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceram Int. 2018;44(11):12642-7. doi: 10.1016/j.ceramint.2018.04.063.

Qian J, Chen F, Zhao X, Chen Z. China rose petal as biotemplate to produce two-dimensional ceria nanosheets. J Nanopart Res. 2011;13(12):7149-58. doi: 10.1007/s11051-011-0626-2.

Malleshappa J, Bhushana N, Chandra SP, Sharma S, Dhananjaya N, Shivakumara C. Eco-friendly green synthesis, structural and photoluminescent studies of CeO2:Eu3+nanophosphors using E. tirucalli plant latex. Journal of Alloys and Compounds. 2014;612:425-34. doi: 10.1016/j.jallcom.2014.05.101.

Sharma JK, Srivastava P, Ameen S, Akhtar MS, Sengupta SK, Singh G. Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation. Mater Res Bull. 2017;91:98-107. doi: 10.1016/j.materresbull.2017.03.034.

Nadeem M, Khan R, Afridi K, Nadhman A, Ullah S, Faisal S, Mabood ZU, Hano C, Abbasi BH. Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: a review. Int J Nanomedicine. 2020;15:5951-61. doi: 10.2147/IJN.S255784. PMID 32848398.

Priya GS, Kanneganti A, Kumar KA, Rao KV, Bykkam S. Biosynthesis of cerium oxide nanoparticles using aloe barbadensis miller gel. Int J Sci Res Publ. 2014;4(6):199-224.

Zamani A, Marjani AP, Alimoradlu K. Walnut shell-templated ceria nanoparticles: green synthesis, characterization and catalytic application. Int J Nanosci. 2018;17(6). doi: 10.1142/S0219581X18500084, PMID 1850008.

Reddy Yadav LS, Manjunath K, Archana B, Madhu C, Raja Naika H, Nagabhushana H, Kavitha C, Nagaraju G. Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities. Eur Phys J Plus. 2016;131(5):1-10. doi: 10.1140/epjp/i2016-16154-y.

Rajan AR, Rajan A, John A, Philip D, editors. Green synthesis of CeO2 nanostructures by using Morus nigra fruit extract and its antidiabetic activity. AIP Conf Proc. 2019. https://doi.org/10.1063/1.5100693

Aseyd Nezhad S, E Hag hiHaghi A, Tabrizi MH. Green synthesis of cerium oxide nanoparticle using origanum majorana L. leaf extract, its characterization, and biological activities. Appl Organomet Chem. 2019;34:5314.

Singh A, Hussain I, Singh NB, Singh H. Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum Lycopersicum L. Ecotoxicol Environ Saf. 2019;182:109410. doi: 10.1016/j.ecoenv.2019.109410.

Irshad MS, Aziz MH, Fatima M, Rehman SU, Idrees M, Rana S. Green synthesis, cytotoxicity, antioxidant and photocatalytic activity of CeO2 nanoparticles mediated via orange peel extract (OPE). Mater Res Express. 2019;6(9). doi: 10.1088/2053-1591/ab3326.

Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN. Green synthesis of silver nanoparticles: a review. Green Sustain Chem. 2016;06(1):34-56. doi: 10.4236/gsc.2016.61004.

Renganathan S, Fatma S, PK. Green synthesis of copper nanoparticle from passiflora foetida leaf extract and its antibacterial activity. Asian J Pharm Clin Res 2017;10(4). doi: 10.22159/ajpcr.2017.v10i4.15744.

Murugesan S, Bhuvaneswari S, Sivamurugan V. Green synthesis, characterization of silver nanoparticles of a marine red alga spyridia fusiformis and their antibacterial activity. Int J Pharm Pharm Sci. 2017;9(5):192. doi: 10.22159/ijpps.2017v9i5.17105.

Pertiwi RD, Suwaldi SE, Setyowati EP, Martien R. Bio-nanoparticles: green synthesis of gold nanoparticles and assessment of biological evaluation. Int J App Pharm. 2019;11(6):133-8. doi: 10.22159/ijap.2019v11i6.34826.

Patil S, Sivaraj R, Raju R. Green synthesis of silver nanoparticle from leaf extract of Aegle marmelos and evaluation of its antibacterial activity. Int J Pharm Pharm Sci. 2015;7:169-73.

Saitawadekar A, Kakde UB. Green synthesis of copper nanoparticles using aspergillus flavus. Crit Rev. 2020;7(16):1083-90.

Nadaroglu H, Onem H, Alayli Gungor A. Green synthesis of Ce2O3 NPs and determination of its antioxidant activity. IET Nanobiotechnology. 2017;11(4):411-9. doi: 10.1049/iet-nbt.2016.0138, PMID 28530190.

Khan SA, Ahmad A. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater Res Bull. 2013;48(10):4134-8. doi: 10.1016/j.materresbull.2013.06.038.

Munusamy S, Bhakyaraj K, Vijayalakshmi L, Stephen A, Narayanan V. Synthesis and characterization of cerium oxide nanoparticles using curvularia lunata and their antibacterial properties. Int J Innov Res Sci Eng. 2014;2(1):318.

Venkatesh KS, Gopinath K, Palani NS, Arumugam A, Jose SP, Bahadur SA, Ilangovan R. Plant pathogenic fungus F. solani mediated biosynthesis of nanoceria: antibacterial and antibiofilm activity. RSC Adv. 2016;6(48):42720-9. doi: 10.1039/C6RA05003D.

Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem. 2018;8(3):217-54. doi: 10.1007/s40097-018-0267-4.

Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel, Switzerland). 2018;11(6). doi: 10.3390/ma11060940, PMID 29865278.

Vijayakumar G, Kesavan H, Kannan A, Arulanandam D, Kim JH, Kim KJ, Song HJ, Kim HJ, Rangarajulu SK. Phytosynthesis of copper nanoparticles using extracts of spices and their antibacterial properties. Processes. 2021;9(8). doi: 10.3390/pr9081341.

Darroudi M, Hoseini SJ, Kazemi Oskuee RK, Hosseini HA, Gholami L, Gerayli S. Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceramics International. 2014;40(5):7425-30. doi: 10.1016/j.ceramint.2013.12.089.

Kargar H, Ghasemi F, Darroudi M. Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceramics International. 2015;41(1):1589-94. doi: 10.1016/j.ceramint.2014.09.095.

Alpaslan E, Yazici H, Golshan NH, Ziemer KS, Webster TJ. pPH-dependent activity of dextran-coated cerium oxide nanoparticles on prohibiting osteosarcoma cell proliferation. ACS Biomaterials Science and Eng. 2015;1(11):1096-103. doi: 10.1021/acsbiomaterials.5b00194, PMID 33429551.

Qi L, Fresnais J, Muller P, Theodoly O, Berret JF, Chapel JP. Interfacial activity of phosphonated-PEG functionalized cerium oxide nanoparticles. Langmuir: the ACS Journal of Surfaces and Colloids. 2012;28(31):11448-56. doi: 10.1021/la302173g, PMID 22794100.

Fang X, Song H. Synthesis of cerium oxide nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative ability and biocompatibility for the spinal cord injury repair. J Photochem Photobiol B. 2019 Feb;191:83-7. doi: 10.1016/j.jphotobiol.2018.11.016, PMID 30594737.

Patil SN, Paradeshi JS, Chaudhari PB, Mishra SJ, Chaudhari BL. Bio-therapeutic potential and cytotoxicity assessment of pectin-mediated synthesized nanostructured cerium oxide. Applied Biochemistry and Biotechnology. 2016;180(4):638-54. doi: 10.1007/s12010-016-2121-9, PMID 27234032.

Ahmed HE, Iqbal Y, Aziz MH, Atif M, Batool Z, Hanif A, Yaqub N, Farooq WA, Ahmad S, Fatehmulla A, Ahmad H. Green synthesis of CeO2 nanoparticles from the abelmoschus esculentus extract: evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities. Molecules (Basel, Switzerland). 2021;26(15). doi: 10.3390/molecules26154659, PMID 34361812.

Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2015;49:408-15. doi: 10.1016/j.msec.2015.01.042, PMID 25686966.

Knott AB, Perkins G, Schwarzenbacher R, Bossy Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nature Reviews Neuroscience. 2008;9(7):505-18. doi: 10.1038/nrn2417, PMID 18568013.

Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxidative Medicine and Cellular Longevity. 2012;2012:428010:428010. doi: 10.1155/2012/428010.

Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Advances in Pharmacological Sciences. 2011;2011:572634:572634. doi: 10.1155/2011/572634.

Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-an updated report. Saudi Pharmaceutical Journal. 2016;24(4):473-84. doi: 10.1016/j.jsps.2014.11.013.

Nourmohamadi E, Kazemi Oskuee R, Hasanzadeh L, Mohajeri M, Hashemzadeh A, Rezayi M. Cytotoxic activity of greener synthesis of cerium oxide nanoparticles using carrageenan towards a WEHI 164 cancer cell line. Ceramics International. 2018;44. doi: 10.1016/j.ceramint.2018.07.201.

Dowding JM, Dosani T, Kumar A, Seal S, Self WT. Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). Chemical communications (Cambridge, England) Chem Commun (Camb). 2012;48(40):4896-8. doi: 10.1039/c2cc30485f, PMID 22498787.

Pinna A, Malfatti L, Galleri G, Manetti R, Cossu S, Rocchitta G, Migheli R, Serra PA, Innocenzi P. Ceria nanoparticles for the treatment of Parkinson-like diseases induced by chronic manganese intoxication. RSC Advances. 2015;5(26):20432-9. doi: 10.1039/C4RA16265J.

Machtoub L, Kasugai Y. Amyotrophic lateral sclerosis: advances and perspectives of neuronanomedicine; 2016. Available from: https://doi:10.1201/b15632. [Last accessed on 30 Apr 2022]

Khan SS, Ullah I, Ullah S, An R, Xu H, Nie K, Liu C, Liu L. Recent advances in the surface functionalization of nanomaterials for antimicrobial applications. Materials (Basel, Switzerland). 2021;14(22). doi: 10.3390/ma14226932, PMID 34832332.

Ai T, Wang F, Feng X, Ruan M. Microstructural and mechanical properties of dual Ti (3). Ceram Int. 2014;40:9947-53. doi: 10.1016/j.ceramint.2014.02.092.

Sebastiammal S, Mariappan A, Neyvasagam K, Annona MuricataInspired LF A. Synthesis of CeO2 nanoparticles and their antimicrobial activity. Mater Today Proc. 2019;9:627-32. doi: 10.1016/j.matpr.2018.10.385.

Paiva CN, Bozza MT. Are reactive oxygen species always detrimental to pathogens? Antioxidants and Redox Signaling. 2014;20(6):1000-37. doi: 10.1089/ars.2013.5447, PMID 23992156.

Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International J Nanomedicine. 2017;12:1227-49. doi: 10.2147/ijnIJN.S121956.s121956. PMID 28243086.

Estevez AY, Pritchard S, Harper K, Aston JW, Lynch A, Lucky JJ, Ludington JS, Chatani P, Mosenthal WP, Leiter JC, Andreescu S, Erlichman JS. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radical Biology and Medicine. 2011;51(6):1155-63. doi: 10.1016/j.freeradbiomed.2011.06.006. PMID 21704154.

Beceiro A, Tomas M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clinical Microbiology Reviews. 2013;26(2):185-230. doi: 10.1128/cmrCMR.00059-12, PMID 23554414.

Pop OL, Mesaros A, Vodnar DC, Suharoschi R, Tabaran F, Magerușan L, Todor IS, Diaconeasa Z, Balint A, Ciontea L, Socaciu C. Cerium oxide nanoparticles and their efficient antibacterial application in vitro against gram-positive and gram-negative pathogens. Nanomaterials (Basel, Switzerland). 2020;10(8). doi: 10.3390/nano10081614, PMID 32824660.

Heckman KL, DeCoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, Leiter JC, Clauss J, Knapp K, Gomez C, Mullen P, Rathbun E, Prime K, Marini J, Patchefsky J, Patchefsky AS, Hailstone RK, Erlichman JS. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano. 2013;7(12):10582-96. doi: 10.1021/nn403743b, PMID 24266731.

Es-haghi A, Aseyd Nezhad S. The anti-oxidant and anti-inflammatory properties of cerium oxide nanoparticles synthesized using riganum majorana L. leaf extract. International Journal of Basic Science in Medicine. 2019;4(3):108-12. doi: 10.15171/ijbsm.2019.20.

Miller JH, Das V. Potential for treatment of neurodegenerative diseases with natural products or synthetic compounds that stabilize microtubules. Curr Pharm Des. 2020;26(35):4362-72. doi: 10.2174/1381612826666200621171302, PMID 32564745.

Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NpgPG Asia Materials. 2014;6(3):e90. doi: 10.1038/am.2013.88.

Graham UM, Tseng MT, Jasinski JB, Yokel RA, Unrine JM, Davis BH, Dozier AK, Hardas SS, Sultana R, Grulke EA, Butterfield DA. In vivo processing of ceria nanoparticles inside liver: impact on free-radical scavenging activity and oxidative stress. Chem Plus Chem. 2014;79(8):1083-8. doi: 10.1002/cplu.201402080, PMID 26322251.

Dan M, Tseng MT, Wu P, Unrine JM, Grulke EA, Yokel RA. Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial. International Journal of Nanomedicine. 2012;7:4023-36. doi: 10.2147/ijnIJN.S32526. s32526. PMID 22888240.

Kumari M, Singh SP, Chinde S, Rahman MF, Mahboob M, Grover P. Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. International Journal of Toxicology. 2014;33(2):86-9486-97. doi: 10.1177/1091581814522305, PMID 24510415.

Mittal S, Pandey AK. Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. BioMed Research International. 2014;2014:891934:891934. doi: 10.1155/2014/891934.

Pal PK, Netravathi M. Management of neurodegenerative disorders: Parkinson'’s disease and Alzheimer'’s disease. J Indian Med Assoc. 2005 Mar;103(3):168-76. PMID 16173294.

You G, Hou J, Xu Y, Miao L, Ao Y, Xing B. Surface properties and environmental transformations controlling the bioaccumulation and toxicity of cerium oxide nanoparticles: A critical review. Rev Environ Contam Toxicol. 2021;253:155-206. doi: 10.1007/398_2020_42, PMID 32462332.

Babu KS, Anandkumar M, Tsai TY, Kao TH, Inbaraj BS, Chen BH. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. International Journal of Nanomedicine. 2014;9:5515-31. doi: 10.2147/ijnIJN.S70087. PMID 25473288.

Arnold MC, Badireddy AR, Wiesner MR, Di Giulio RT, Meyer JN. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in caenorhabditis elegans. Archives of Environmental Contamination and Toxicology. 2013;65(2):224-33. doi: 10.1007/s00244-013-9905-5, PMID 23619766.

Wu J, Ma Y, Ding Y, Zhang P, He X, Zhang Z. Toxicity of international journal published in association with BIBRA. 2017;38:136-41. doi: 10.1016/j.tiv.2016.09.022.

Chandrappa CP, Chandrasekar N, Govindappa M, Chaitra Shanbhag C, Uttam Kumar Singh UK, Jayashri Masarghal J. Antibacterial activity of synthesized silver nanoparticles by Simaroubaglauca against pathogenic bacteria. Int J Curr Pharm Sci. 2017;9(4):19-22. doi: 10.22159/ijcpr.2017v9i4.20629.

Published

07-07-2022

How to Cite

SRIRAMCHARAN, P., NATARAJAN, J., RAMAN, R., NAGARAJU, G., JUSTIN, A., & SENTHIL, V. (2022). A REVIEW ON GREEN-SYNTHESIS OF CERIUM OXIDE NANOPARTICLES: FOCUS ON CENTRAL NERVOUS SYSTEM DISORDERS. International Journal of Applied Pharmaceutics, 14(4), 94–102. https://doi.org/10.22159/ijap.2022v14i4.44487

Issue

Section

Review Article(s)