3D PRINTING: A REVIEW ON THE TRANSFORMATION OF ADDITIVE MANUFACTURING

Authors

DOI:

https://doi.org/10.22159/ijap.2022v14i4.44597

Keywords:

3D printing, Nanotechnology, Selective laser sintering, Additive Manufacturing, Sheet lamination

Abstract

3D printing and nanotechnology have been two of the most important tools in the development of personalized medical treatments. More recently, their alliance has developed in an effort to create new, flexible, multidisciplinary, and/or medical and drug-wise products. Therefore, a comprehensive review of scientific studies, including 3D printing and nanomaterials on the development of new pharmaceutical methods and medical applications for the treatment and prevention of diseases, is presented here with the help of secondary research from most recent articles. 3D printing, also known as additive manufacturing, has held the power of building a new class of active nanocomposites. With the ability to print a layer of complex 3D objects by layer, additional production of nanomaterials can be used in new ways to significantly control architectural structures of all sizes. The high efficiency of embedded nanomaterials can further extend the power of nanocomposites to structures such as gradients in thermal conductivity, converted photonic emissions, and increased energy and reduced weight. According to the survey done by annual industry, around 50% of the market of 3d printing in the industrial sectors is credited to created prototypes by means of photopolymers. While, Formlabs, Stratasys, HP, Desktop Metal, Ultimaker, Carbon, EOS, Nanoscribe and Markforged are among the top additive manufacturers. This work is hereby an effort to focus on different techniques, merits and demerits, applications, recent advances, relation with nanotechnology along with future aspects.

Downloads

Download data is not yet available.

References

Jamroz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications – recent achievements and challenges. Pharm Res. 2018 Jul 11;35(9):176. doi: 10.1007/s11095-018-2454-x, PMID 29998405.

Diego JH. 3D printing of pharmaceutical drug delivery systems, arc org inorg. Chem Sci. 2018;1:2.

Mammadov E. Three-dimensional printing in medicine: current status and future perspectives. Cyprus J Med Sci. 2018 Dec 1;3(3):186-8. doi: 10.5152/cjms.2018.544.

Dumitrescu I. The age of pharmaceutical 3D printing. Technological and therapeutical implications of additive manufacturing. Farmacia. 2018 May 1;66(3):365-89. doi: 10.31925/farmacia.2018.3.1.

Hsiao WK, Lorber B, Reitsamer H, Khinast J. 3D printing of oral drugs: a new reality or hype? Expert Opin Drug Deliv. 2018 Jan 2;15(1):1-4. doi: 10.1080/17425247.2017.1371698, PMID 28836459.

Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017 Aug 9;117(15):10212-90. doi: 10.1021/acs.chemrev.7b00074, PMID 28756658.

Swati S, Jyothi N, Jyothi GN, Prasanthi NL. A review on 3d printed tablets: a downloadable medicine. Asian J Technol Innov. 2016;04(20):34-9.

Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI. Neurotoxicity of nanomaterials: an up-to-date overview. Nanomaterials (Basel). 2019 Jan;9(1):96. doi: 10.3390/nano9010096, PMID 30642104.

Zhu W, Webster TJ, Zhang LG. How can 3D printing be a powerful tool in nanomedicine? Nanomedicine (Lond). 2018 Feb;13(3):251-3. doi: 10.2217/nnm-2017-0369, PMID 29338559.

Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):e10143. doi: 10.1002/btm2.10143, PMID 31572799.

Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016 Oct;33(10):2373-87. doi: 10.1007/s11095-016-1958-5, PMID 27299311.

Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017 Dec;42(12):742-55. PMID 29234213.

Goyanes A, Robles Martinez PR, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015 Oct 30;494(2):657-63. doi: 10.1016/j.ijpharm.2015.04.069, PMID 25934428.

Beck RCR, Chaves PS, Goyanes A, Vukosavljevic B, Buanz A, Windbergs M. 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm. 2017 Aug 7;528(1-2):268-79. doi: 10.1016/j.ijpharm.2017.05.074, PMID 28583328.

Tamjid E, Bohlouli M, Mohammadi S, Alipour H, Nikkhah M. Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing. J Biomed Mater Res A. 2020 Jun;108(6):1426-38. doi: 10.1002/jbm.a.36914, PMID 32134569.

Goole J, Amighi K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int J Pharm. 2016 Feb 29;499(1-2):376-94. doi: 10.1016/j.ijpharm.2015.12.071, PMID 26757150.

Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Mater Sci Eng CR: Reports. 2020 Apr 1;140:100543.

Puppi D, Chiellini F. Biodegradable polymers for biomedical additive manufacturing. Appl Mater Today. 2020 Sep 1;20:100700. doi: 10.1016/j.apmt.2020.100700.

Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018 Aug 1;23(8):1547-55. doi: 10.1016/j.drudis.2018.05.025, PMID 29803932.

Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK. Medical 3D printing for the radiologist. RadioGraphics. 2015;35(7):1965-88. doi: 10.1148/rg.2015140320, PMID 26562233.

Tay YWD, Panda B, Paul SC, Noor Mohamed NA, Tan MJ, Leong KF. 3D printing trends in building and construction industry: a review. Virtual and Physical Prototyping. 2017 Jul 3;12(3):261-76. doi: 10.1080/17452759.2017.1326724.

Binder Jetting Additive Manufacturing. Thedarlingbakers.blogspot.com; 2022. Available from: https://thedarlingbakers.blogspot.com/2019/11/binder-jetting-additive-manufacturing.html. [Last accessed on 23 May 2022]

Sachs EM, Haggerty JS, Cima MJ, Williams PA, Inventors. Three-dimensional printing techniques. United States Patent US. 1993 Apr 20;5(204):55.

Rafiee M, Farahani RD, Therriault D. Multi‐material 3D and 4D printing: a survey. Adv Sci (Weinh). 2020 Jun;7(12):1902307. doi: 10.1002/advs.201902307, PMID 32596102.

Make.3dexperience.3ds.com; 2022. Available from: https://make.3dexperience.3ds.com/resources/20220415T184953Z/en/webapps/MP3DPWikiProcessesDatas/assets/images/additive/F_ProcessAdditive_MaterialJetting@2x.png. [Last accessed on 23 May 2022]

Margolin L. Ultrasonic droplet generation jetting technology for additive manufacturing: an initial investigation; 2022. Available from: http://hdl.handle.net/1853/14031. [Last accessed on 11 Apr 2022]

Kęsy A, Kotlinski J. Mechanical properties of parts produced by using polymer jetting technology. Arch Civ Mech Eng. 2010;10(3):37-50. doi: 10.1016/S1644-9665(12)60135-6.

Engineeringproductdesign.png publications; 2022. Available from: https://engineeringproductdesign.com/wp-content/uploads/SheetLaminationOverview-1-768x486. [Last accessed on 23 May 2022]

Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018 Jan 1;21(1):22-37. doi: 10.1016/j.mattod.2017.07.001.

Vijayavenkataraman S, Fuh JY, Lu WF. 3D printing and 3D bioprinting in pediatrics. Bioengineering. 2017 Sep;4(3):63. doi: 10.3390/bioengineering4030063.

Low ZX, Chua YT, Ray BM, Mattia D, Metcalfe IS, Patterson DA. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J Membr Sci. 2017 Feb 1;523:596-613. doi: 10.1016/j.memsci.2016.10.006.

Reddy P. Digital light processing (DLP); 2016. Available: https://www.think3d.in/digital-light-processing-dlp-3dprinting-technology-overview/. [Last accessed on 13 Jun 2022]

Silbernagel C, Gargalis L, Ashcroft I, Hague R, Galea M, Dickens P. Electrical resistivity of pure copper processed by medium-powered laser powder bed fusion additive manufacturing for use in electromagnetic applications. Addit Manuf. 2019 Oct 1;29:100831. doi: 10.1016/j.addma.2019.100831.

Kessler A, Hickel R, Reymus M. 3D printing in dentistry-state of the art. Oper Dent. 2020;45(1):30-40. doi: 10.2341/18-229-L, PMID 31172871.

Vickers NJ. Animal communication: when I’m calling you, will you answer too? Curr Biol. 2017 Jul 24;27(14):R713-5. doi: 10.1016/j.cub.2017.05.064, PMID 28743020.

Nelson JC, Xue S, Barlow JW, Beaman JJ, Marcus HL, Bourell DL. Model of the selective laser sintering of bisphenol-a polycarbonate. Ind Eng Chem Res. 1993 Oct;32(10):2305-17. doi: 10.1021/ie00022a014.

Obikawa T, Yoshino M, Shinozuka J. Sheet steel lamination for rapid manufacturing. Mater Process Journal of Materials Processing Technology. 1999;89-90:171-6. doi: 10.1016/S0924-0136(99)00027-8.

Tiwari SK, Pande S, Agrawal S, Bobade SM. Selection of selective laser sintering materials for different applications. Rapid Prototyping Journal. 2015;21(6):630-48. doi: 10.1108/RPJ-03-2013-0027.

White DR. Ultrasonic consolidation of aluminum tooling. Adv Mater Process Adv. 2003 Jan 1;161(1):64-6.

White D, Inventor, Solidica Inc, Assignee. Ultrasonic object consolidation. United States patent US; 2003 Feb 11;6(519):500.

Which resin 3d printing process should you choose?- 3Dnatives. 3Dnatives; 2022. Available from: https://www.3dnatives.com/en/sla-vs-dlp-3d-printing-080420215/. [Last accessed on 23 May 2022]

Alipoori S, Mazinani S, Aboutalebi SH, Sharif F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J Energy Storage. 2020 Feb 1;27:101072. doi: 10.1016/j.est.2019.101072.

Sing SL, Tey CF, Tan JH, Huang S, Yeong WY. 3D printing of metals in rapid prototyping of biomaterials: techniques in additive manufacturing. Woodhead Publishing; 2020 Jan 1. p. 17-40.

Sun J, Vijayavenkataraman S, Liu H. An overview of scaffold design and fabrication technology for engineered knee meniscus. Materials (Basel). 2017 Jan;10(1):29. doi: 10.3390/ma10010029, PMID 28772388.

Jose PA, GV. 3D printing of pharmaceuticals–a potential technology in developing personalized medicine. Asian J Pharm Res Dev. 2018 Jul 10;6(3):46-54.

Rupp H, Dohler D, Hilgeroth P, Mahmood N, Beiner M, Binder WH. 3D printing of supramolecular polymers: impact of nanoparticles and phase separation on printability. Macromol Rapid Commun. 2019 Dec;40(24):e1900467. doi: 10.1002/marc.201900467, PMID 31778270.

Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240-53. doi: 10.1021/ac403397r, PMID 24432804.

Lan PT, Chou SY, Chen LL, Gemmill D. Determining fabrication orientations for rapid prototyping with stereolithography apparatus. Comput Aid Des. 1997 Jan 1;29(1):53-62. doi: 10.1016/S0010-4485(96)00049-8.

Bartlett S. Printing organs on demand. Lancet Respir Med. 2013 Nov 1;1(9):684. doi: 10.1016/S2213-2600(13)70239-X, PMID 24429271.

Wren K. Science and society. Experts warn against bans on 3D printing. Science. 2013;342(6157):439.

Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013 Jan 30;60(3):691-9. doi: 10.1109/TBME.2013.2243912, PMID 23372076.

Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. . IEEE Trans Biomed Eng. 2013 Jan 30;60(3):691-9.

Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013 Jan 30;60(3):691-9. doi: 10.1109/TBME.2013.2243912, PMID 23372076.

Rengier F, Mehndiratta A, Von Tengg Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010 Jul;5(4):335-41. doi: 10.1007/s11548-010-0476-x, PMID 20467825.

Oishi M, Fukuda M, Yajima N, Yoshida K, Takahashi M, Hiraishi T. Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors. J Neurosurg. 2013 Jul 1;119(1):94-105. doi: 10.3171/2013.3.JNS121109, PMID 23581591.

Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014 Jun 2;5(1):3935. doi: 10.1038/ncomms4935, PMID 24887553.

Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol. 2018 Aug 1;36(8):787-805. doi: 10.1016/j.tibtech.2018.03.003, PMID 29678431.

Han W, Singh NK, Kim JJ, Kim H, Kim BS, Park JY. Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks. Biomaterials. 2019 Dec 1;224:119496. doi: 10.1016/j.biomaterials.2019.119496, PMID 31557592.

Asiri AM, Mohammad A. editors. Applications of nanocomposite materials in drug delivery. Woodhead Publ Ser Electron Opt Mater; 2018 Jun 18.

Choonara BF, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv. 2014 Nov 15;32(7):1269-82. doi: 10.1016/j.biotechadv.2014.07.006, PMID 25099657.

Pawar AA, Saada G, Cooperstein I, Larush L, Jackman JA, Tabaei SR. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Sci Adv. 2016 Apr 1;2(4):e1501381. doi: 10.1126/sciadv.1501381, PMID 27051877.

Tzounis L, Bangeas P. 3D printing and nanotechnology. Ann Med Surg. 2022 Jan 1;2:7-26.

Th.bing.com; 2022. Available from: https://th/id/OIP.zpBuWlQTok_itEVHSoE5JwHaGr? pid=ImgDetandrs=1. [Last accessed on 23 May 23 2022]

Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017 Jan;6(1):1601118. doi: 10.1002/adhm.201601118, PMID 27995751.

You S, Li J, Zhu W, Yu C, Mei D, Chen S. Nanoscale 3D printing of hydrogels for cellular tissue engineering. J Mater Chem B. 2018;6(15):2187-97. doi: 10.1039/C8TB00301G, PMID 30319779.

Mao M, He J, Li X, Zhang B, Lei Q, Liu Y. The emerging frontiers and applications of high-resolution 3D printing. Micromachines. 2017 Apr;8(4):113. doi: 10.3390/mi8040113.

Haq MIU, Raina A, Ghazali MJ, Javaid M, Haleem A. Potential of 3D printing technologies in developing applications of polymeric nanocomposites. Composites Science and Technology. 2021:193-210. doi: 10.1007/978-981-16-3903-6_10.

Smushcdn; 2022. Available from: https://939506.smushcdn.com/2600043/wp-content/uploads/2019/07/Directed-Energy-Deposition-DED-Process.jpg?lossy=0&strip=1&webp=1. [Last accessed on 23 May 2022]

Xing JF, Zheng ML, Duan XM. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev. 2015;44(15):5031-9. doi: 10.1039/c5cs00278h, PMID 25992492.

Awad A, Yao A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. 3D printed tablets (printlets) with braille and moon patterns for visually impaired patients. Pharmaceutics. 2020 Feb;12(2):172. doi: 10.3390/pharmaceutics12020172.

dos Santos J, Oliveira RS, Oliveira TV, Velho MC, Konrad MV, da Silva GS. 3D printing and nanotechnology: A multiscale alliance in personalized medicine. Adv Funct Mater. 2021 Apr;31(16):2009691. doi: 10.1002/adfm.202009691.

Brazhkina O, Davis ME. 3D bioprinting in cardiovascular nanomedicine. Nanomed. J Icine (Lond). 2021 Mar;16(16):1347-50. doi: 10.2217/nnm-2021-0083, PMID 34080438.

Yang J, Cheng Y, Gong X, Yi S, Li CW, Jiang L. An integrative review on the applications of 3D printing in the field of in vitro diagnostics. Chin Chem Lett. 2021 Aug 28.

Griffith M. Laser engineered net shaping (LENS) for fabrication of metallic components. ASME International Mechanical Engineering Congress and Exposition; 1996.

Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B: Engineering. 2018 Jun 15;143:172-96. doi: 10.1016/j.compositesb. 2018.02.012.

Rahim TNAT, Abdullah AM, Md AkilMd Akil HH. Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polym. Rev. 2019 Oct 2;59(4):589-624. doi: 10.1080/15583724.2019.1597883.

Wickramasinghe S, Do T, Tran P. FDM-based 3D printing of polymer and associated composite: a review on mechanical properties, defects and treatments. Polymers (Basel). 2020 Jul;12(7):1529. doi: 10.3390/polym12071529, PMID 32664374.

Hwang HH, Zhu W, Victorine G, Lawrence N, Chen S. 3D‐printing of functional biomedical microdevices via light‐and extrusion‐based approaches. Small Methods. 2018 Feb;2(2):1700277. doi: 10.1002/smtd.201700277, PMID 30090851.

Jaisingh Sheoran A, Kumar H. Fused deposition modeling process parameters optimization and effect on mechanical properties and part quality: review and reflection on present research. Mater Today Proc. 2020;21(3):1659-72. doi: 10.1016/j.matpr.2019.11.296.

Salomon VJ, Meyer CC, Kleine M. Competition dynamics and fraudulent behavior– evidence from a multi-period experiment. Proceedings. 2020;2020(1). doi: 10.5465/AMBPP.2020.20043abstract.

Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. J Funct Biomater. 2018 Mar;9(1):17. doi: 10.3390/jfb9010017, PMID 29414913.

Blais F. Review of 20 y of range sensor development. J Electron Imaging. 2004;13(1):231-44. doi: 10.1117/1.1631921.

Lynch JP. A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib Dig. 2006;38(2):91–130. doi: 10.1177/0583102406061499.

Lee B. Review of the present status of optical fiber sensors. Opt Fiber Technol. 2003;9(2):57-79. doi: 10.1016/S1068-5200(02)00527-8.

Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey. Comput Netw. 2008;52(12):2292-330. doi: 10.1016/j.comnet.2008.04.002.

Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: A survey. Comput Netw. 2002;38(4):393-422. doi: 10.1016/S1389-1286(01)00302-4.

Nag A, Zia AI, Li X, Mukhopadhyay SC, Kosel J. Novel sensing approach for LPG leakage detection: Part I-operating mechanism and preliminary results. IEEE Sensors J. 2016;16(4):996-1003. doi: 10.1109/JSEN.2015.2496400.

Beccai L, Roccella S, Arena A, Valvo F, Valdastri P, Menciassi A, Carrozza MC, Dario P. Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications. Sens Actuators A Phys. 2005;120(2):370-82. doi: 10.1016/j.sna.2005.01.007.

Nag A, Zia AI, Li X, Mukhopadhyay SC, Kosel J. Novel sensing approach for LPG leakage detection-part II: Effects of particle size, composition, and coating layer thickness. IEEE Sensors J. 2016;16(4):1088-94. doi: 10.1109/JSEN.2015.2496550.

Yebo NA, Lommens P, Hens Z, Baets R. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film. Opt Express 2010;18(11):11859-66. doi: 10.1364/OE.18.011859, PMID 20589047.

Azevedo RG, Zhang J, Jones DG, Myers DR, Jog AV, Jamshidi B, Wijesundara MB, Maboudian R, Pisano AP. Silicon carbide coated MEMS strain sensor for harsh environment applications. In: Proceedings of the 2007 IEEE 20th international conference on micro electro mechanical systems (MEMS). Japan: Hyogo, Japan; 21-25 Jun 2007;643-6.

Azevedo RG, Jones DG, Jog AV, Jamshidi B, Myers DR, Chen L, Fu XA, Mehregany M, Wijesundara MB, Pisano AP. A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sensors J. 2007;7(4):568-76. doi: 10.1109/JSEN.2007.891997.

Barclift MW, Williams CB. Examining variability in the mechanical properties of parts manufactured via polyjet direct 3D printing. In: Proceedings of the international solid freeform fabrication symposium, Austin, TX, USA; 2012. p. 6-8.

Ionita CN, Mokin M, Varble N, Bednarek DR, Xiang J, Snyder KV, Siddiqui AH, Levy EI, Meng H, Rudin S. Challenges and limitations of patient-specific vascular phantom fabrication using 3D polyjet printing. In. Proceedings of the medical imaging 2014: Proc SPIE Int Soc Opt Eng. 2014;9038:90380M. doi: 10.1117/12.2042266, PMID 25300886.

Anderson KB, Lockwood SY, Martin RS, Spence DMA. A 3D printed fluidic device that enables integrated features. Anal Chem. 2013;85(12):5622-6. doi: 10.1021/ac4009594, PMID 23687961.

Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon LA. A 3D printed dry electrode for ECG/EEG recording. Sens Actuators A. 2012;174:96-102. doi: 10.1016/j.sna.2011.12.017.

Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Direct selective laser sintering of metals. Rapid Prototyping Journal 1995;1(1):26-36. doi: 10.1108/13552549510078113.

Azevedo RG, Jones DG, Jog AV, Jamshidi B, Myers DR, Chen L. A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens J. 2007 Mar 5;7(4):568-76. doi: 10.1109/JSEN.2007.891997.

Ionita CN, Mokin M, Varble N, Bednarek DR, Xiang J, Snyder KV. Challenges and limitations of patient-specific vascular phantom fabrication using 3D polyjet printing. Proc SPIE Int Soc Opt Eng. 2014;9038:90380M. doi: 10.1117/12.2042266. PMID 25300886.

Chen C, Wang Y, Lockwood SY, Spence DM. 3D-printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine. Analyst. 2014;139(13):3219-26. doi: 10.1039/c3an02357e, PMID 24660218.

Erkal JL, Selimovic A, Gross BC, Lockwood SY, Walton EL, McNamara S, Martin RS, Spence DM. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab on a Chip. 2014;14(12):2023-32. doi: 10.1039/c4lc00171k, PMID 24763966.

Ragones H, Schreiber D, Inberg A, Berkh O, Kosa G, Shacham Diamand Y. Processing issues and the characterization of soft electrochemical 3D sensor. Electrochimica Acta. 2015 Nov 20;183:125-9. doi: 10.1016/j.electacta.2015.04.109.

Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci. 2015 Oct 1;74:401-77. doi: 10.1016/j.pmatsci.2015.03.002.

Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240-53. doi: 10.1021/ac403397r, PMID 24432804.

Cui X, Boland T, D’Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6(2):149-55. doi: 10.2174/187221112800672949, PMID 22436025.

Kumar S. Selective laser sintering: a qualitative and objective approach. Jom OM. 2003 Oct;55(10):43-7. doi: 10.1007/s11837-003-0175-y.

Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Direct selective laser sintering of metals. Rapid Prototyp. 1995 Mar 1;1(1):26-36. doi: 10.1108/13552549510078113.

Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014 Jun;23(6):1917-28. doi: 10.1007/s11665-014-0958-z.

Ude C, Hentrop T, Lindner P, Lücking TH, Scheper T, Beutel S. New perspectives in shake flask pH control using a 3D-printed control unit based on pH online measurement. Sensors and Actuators B: Chemical. 2015 Dec 31;221:1035-43. doi: 10.1016/j.snb.2015.07.017.

Merceron TK, Burt M, Seol YJJ, Kang HWW, Lee SJ, Yoo JJ, Atala AA. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication. 2015;7(3):35003035003. doi: 10.1088/1758-5090/7/3/035003, PMID 26081669.

Bansal M, Sharma V, Singh G, Harikumar SL. 3D printing for the future of pharmaceuticals dosages forms. Int J Appl Pharm. 2018;10(3):1-7.

Ursan ID, Chiu L, Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc. 2013;53(2):136-44. doi: 10.1331/JAPhA.2013.12217, PMID 23571620.

Solomon IJ, Sevvel P, Gunasekaran J. A review on the various processing parameters in FDM. Mater Today Proc 2021 Jan 1;37:509-14. doi: 10.1016/j.matpr.2020.05.484.

Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016 Jul 2;42(7):1019-31. doi: 10.3109/03639045.2015.1120743, PMID 26625986.

Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A, Gaisford S, Basit AW. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019 Oct 3;16(10):1081-94. doi: 10.1080/17425247.2019.1660318, PMID 31478752.

Anandhapadman A, Venkateswaran A, Jayaraman H, Veerabadran Ghone NV. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects. Biotechnol Prog. 2022 Jan 17:e3234. doi: 10.1002/btpr.3234, PMID 35037419.

Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A, Gaisford S, Basit AW. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019 Oct 3;16(10):1081-94. doi: 10.1080/17425247.2019.1660318, PMID 31478752.

Maraie NK, Salman ZD, Yousif NZ. Design and characterization of oroslippery buoyant tablets for ranitidine hydrochloride. Asian J Pharm Clin Res. 2018;11(1):143-9. doi: 10.22159/ajpcr.2018.v11i1.21982.

Panda N, Reddy AV, Reddy GVS, Sultana A. Formulation design and in vitro evaluation of bilayer sustained release matrix tablets of doxofylline. Int J Pharm Pharm Sci. 2015;7:74-83.

Salem HF, Tamam SM, Lotayef SM. Biodegradable liposomes for acyclovir-gold nanoparticles as an efficient carrierfor enhanced topical delivery. Int J Pharm Pharm Sci. 2017;9(8):60-4. doi: 10.22159/ijpps.2017v9i8.17243.

Shah H, Patel J. Bicelle: a lipid nanostructure for transdermal delivery. J Crit Rev. 2016;3:17-22.

Wang X, Maakitie AA, Partanen J, Tuomi J, Paloheimo KS. The integrations of biomaterials and rapid prototyping techniques for intelligent manufacturing of complex organs. INTECH Open Access Publisher; 2013.

Le HP. Progress and trends in ink-jet printing technology. J Imaging Sci Technol. 1998;42:49-62.

Ali MA, Hu C, Yttri EA, Panat R. Recent advances in 3D printing of biomedical sensing devices. Advanced Functional Materialsials. 2022 Feb;32(9):2107671. doi: 10.1002/adfm.202107671.

Placone JK, Mahadik B, Fisher JP. Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential. APL Bioengineering. 2020 Mar 1;4(1):010901. doi: 10.1063/1.5127860, PMID 32072121.

Subramanian V, Frechet JMJ, Chang PC, Huang DC, Lee JB, Molesa SE. Progress toward development of all-printed RFID tags: materials, processes, and devices. Proc IEEE. 2005;93(7):1330-8. doi: 10.1109/JPROC.2005.850305.

Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121-30. doi: 10.1016/j.biomaterials.2010.04.050, PMID 20478613.

Kolakovic R, Viitala T, Ihalainen P, Genina N, Peltonen J, Sandler N. Printing technologies in fabrication of drug delivery systems. Expert Opin Drug Deliv. 2013;10(12):1711-23. doi: 10.1517/17425247.2013.859134, PMID 24256326.

Chadha U, Abrol A, Vora NP, Tiwari A, Shanker SK, Selvaraj SK. Performance evaluation of 3D printing technologies: a review, recent advances, current challenges, and future directions. Progress in Additive Manufacturing. 2022 Feb 5:1-34. doi: 10.1007/s40964-021-00257-4.

Singh OP, M Ahmed S, Abhilash M. Modern 3D printing technologies: future trends and developments. Recent Pat Eng. 2015 Aug 1;9(2):91-103. doi: 10.2174/1872212109666150213000747.

Preis M, Breitkreutz J, Sandler N. Perspective: concepts of printing technologies for oral film formulations. Int J Pharm. 2015;494(2):578-84. doi: 10.1016/j.ijpharm.2015.02.032, PMID 25683143.

Genina N, Kolakovic R, Palo M, Fors D, Juvonen H. Fabrication of printed drug-delivery systems. NIP and digital fabrication conference. Society for Imaging Science and Technology; 2013. p. 236-8.

Ihalainen P, Maattanen A, Sandler N. Printing technologies for biomolecule and cell-based applications. Int J Pharm. 2015;494(2):585-92. doi: 10.1016/j.ijpharm.2015.02.033, PMID 25683144.

Latief A, Suhardi P, Badri C. Three-dimensional model printing in oral and maxillofacial reconstructive surgery: comparison of three-dimensional models and multislice computed tomography scans. Int J Appl Pharm. 2017;9:74-8.

Kumar R, Kumar R. 3D printing of food materials: A state of art review and future applications. Mater Today Proc. 2020 Jan 1;33:1463-7.

Low ZX, Chua YT, Ray BM, Mattia D, Metcalfe IS, Patterson DA. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J Membr Sci. 2017 Feb 1;523:596-613. doi: 10.1016/ j.memsci.2016.10.006.

Ali MH, Issayev G, Shehab E, Sarfraz S. A critical review of 3D printing and digital manufacturing in construction engineering. RPJ. doi: 10.1108/RPJ-07-2021-0160.

Thakar CM, Parkhe SS, Jain A, Phasinam K, Murugesan G, Ventayen RJM. 3d Printing: basic principles and applications. Mater Today Proc. 2022 Jan 1;51:842-9. doi: 10.1016/j.matpr.2021.06.272.

Pradeep PV, Paul L. Review on novel biomaterials and innovative 3D printing techniques in biomedical applications. Mater Today Proc. 2022 Jan 31;58:96-103. doi: 10.1016/j.matpr.2022.01.072.

Bao Y, Paunovic N, Leroux JC. Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Adv Funct Materials. 2022;32(15):2109864. doi: 10.1002/adfm.202109864.

Mani MP, Sadia M, Jaganathan SK, Khudzari AZ, Supriyanto E, Saidin S, Ramakrishna S, Ismail AF, Faudzi AA. A review on 3D printing in tissue engineering applications. J Polym Eng. 2022 Jan 10;42(3):243-65. doi: 10.1515/polyeng-2021-0059.

Chadha U, Abrol A, Vora NP, Tiwari A, Shanker SK, Selvaraj SK. Performance evaluation of 3D printing technologies: a review, recent advances, current challenges, and future directions. Prog Addit Manuf. 2022 Feb 5:1-34. doi: 10.1007/s40964-021-00257-4.

Thompson MS. Current status and future roles of additives in 3D printing-A perspective. Vinyl Additive Technology. 2022 Jan 3;28(1):3-16. doi: 10.1002/vnl.21887.

Published

07-07-2022

How to Cite

RAJORA, A., KUMAR, R., SINGH, R., SHARMA, S., KAPOOR, S., & MISHRA, A. (2022). 3D PRINTING: A REVIEW ON THE TRANSFORMATION OF ADDITIVE MANUFACTURING. International Journal of Applied Pharmaceutics, 14(4), 35–47. https://doi.org/10.22159/ijap.2022v14i4.44597

Issue

Section

Review Article(s)

Most read articles by the same author(s)