BIOAVAILABILITY ENHANCEMENT OF REPAGLINIDE USING NANO LIPID CARRIER: PREPARATION CHARACTERIZATION AND IN VIVO EVALUATION

Authors

  • ROOHI KESHARWANI Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Naini, Prayagraj, U. P., India https://orcid.org/0000-0001-8764-6207
  • DILIP K. PATEL Department of Pharmacy, Government Polytechnic Jaunpur, U. P. India
  • PANKAJ KUMAR YADAV Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Naini, Prayagraj, U. P., India

DOI:

https://doi.org/10.22159/ijap.2022v14i5.45032

Keywords:

Repaglinide, Nanostructure lipid carrier, NLC, SLN, Solid lipid nanoparticle, Lipid nanoparticle

Abstract

Objective: The aim of this study to manufacture the prolonged release lipid nanoparticle (Solid lipid nanoparticle and nanostructure lipid carrier) of repaglinide for enhance the oral bioavailability.

Methods: Solid lipid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) were prepared by slight modification in the solvent diffusion method. The core material used as cetyl alcohol while blend with oleic acid was used in the preparation of NLC dispersion. Tween 80 were utilized as a Surfactant and lecithin as a cosurfactant in both types of lipid formulation. Lipid nanoparticles were characterized for size distribution, entrapment parameter, zeta potential, surface morphology, in vitro drug release and stability study. Pharmacodynamic study were also performed to evaluate the antidiabetic activity of repaglinide-loaded lipid nanodispersion.

Results: It was observed that lipid matrix-based SLN and NLC having significant particle size (157.8±15.8 nm for NLC and 238.4±48.2 nm for SLN dispersion), entrapment efficacy 79.82±0.84% for NLC and 72.04±1.03% for SLN dispersion. Zeta potential report was also clarifying that the formulation is in a stable state for a prolong time. SEM study size distribution of particle as evaluated by Malvern instrument. The formulation was also confirmed to be stable after 180 d of storage, according to the data from the stability study. The in vivo antidiabetic assessment showed that Repaglinide-loaded SLN and NLC dispersion were able to reduce the blood sugar level. Interestingly, in the case of the RPG-SLN, RPG-NLC-I and RPG-NLC-II groups, and the average blood sugar values at all-time intervals were significantly less than that of the basal glucose value (p<0.05).

Conclusion: The prepared SLN and NLC dispersion having the ability to control the release and make nano formulation suitable to resolve poor bioavailability of repaglinide.

Downloads

Download data is not yet available.

References

Poonia N, Kharb R, Lather V, Pandita D. Nanostructured lipid carriers: versatile oral delivery vehicle. Future Sci OA. 2016;2(3):FSO135. doi: 10.4155/fsoa-2016-0030, PMID 28031979.

Patel P, Patel M. Nanostructured lipid carriers-a versatile carrier for oral delivery of lipophilic drugs. Recent Pat Nanotechnol. 2021;15(2):154-64. doi: 10.2174/ 1872210514666200909154959, PMID 32912129.

Gaba B, Fazil M, Ali A, Baboota S, Sahni JK, Ali J. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv. 2015 Aug 18;22(6):691-700. doi: 10.3109/10717544.2014.898110, PMID 24670099.

Banerjee S, Pillai J. Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs. Expert Opin Drug Metab Toxicol. 2019 Jun 3;15(6):499-515. doi: 10.1080/17425255.2019.1621289, PMID 31104522.

Pathak K, Raghuvanshi S. Oral bioavailability: issues and solutions via nanoformulations. Clin Pharmacokinet. 2015 Mar 21;54(4):325-57. doi: 10.1007/s40262-015-0242-x, PMID 25666353.

Zhang L, Wang S, Zhang M, Sun J. Nanocarriers for oral drug delivery. J Drug Target. 2013 Jul;21(6):515-27. doi: 10.3109/1061186X.2013.789033, PMID 23621127.

Ebrahimi HA, Javadzadeh Y, Hamidi M, Jalali MB. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru. 2015 Sep 21;23(1):46. doi: 10.1186/s40199-015-0128-3, PMID 26392174.

Culy CR, Jarvis B. Repaglinide: a review of its therapeutic use in type 2 diabetes mellitus. Drugs. 2001;61(11):1625-60. doi: 10.2165/00003495-200161110-00008, PMID 11577798.

Lokhande AB, Mishra S, Kulkarni RD, Naik JB. Preparation and characterization of repaglinide-loaded ethylcellulose nanoparticles by solvent diffusion technique using a high-pressure homogenizer. J Pharm Res. 2013 May;7(5):421-6. doi: 10.1016/j.jopr.2013.04.049.

Tripathi K. Essentials of medical pharmacology. Essentials Med Pharmacol; 2008.

Rawat MK, Jain A, Singh S. In vivo and cytotoxicity evaluation of repaglinide-loaded binary solid lipid nanoparticles after oral administration to rats. J Pharm Sci. 2011 Jun;100(6):2406-17. doi: 10.1002/jps.22454, PMID 21491451.

Jain S, Saraf S. Repaglinide-loaded long-circulating biodegradable nanoparticles: a rational approach for the management of type 2 diabetes mellitus. J Diabetes. 2009;1(1):29-35. doi: 10.1111/j.1753-0407.2008.00001.x, PMID 20923517.

Tavakoli N, Minaiyan M, Tabbakhian M, Pendar Y. Preparation and evaluation of a controlled drug release of repaglinide through matrix pellets: in vitro and in vivo studies. J Microencapsul. 2014;31(6):529-34. doi: 10.3109/02652048.2014.885604, PMID 24697183.

Pandey SS, Patel MA, Desai DT, Patel HP, Gupta AR, Joshi SV. Bioavailability enhancement of repaglinide from transdermally applied nanostructured lipid carrier gel: optimization, in vitro and in vivo studies. J Drug Deliv Sci Technol. 2020 Jun 1;57:101731. doi: 10.1016/j.jddst.2020.101731.

Vijayan V, Reddy KR, Sakthivel S, Swetha C. Optimization and characterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2013 Nov 1;111:150-5. doi: 10.1016/j.colsurfb.2013.05.020, PMID 23792547.

Patel DK, Kumar V, Kesharwani R. Lipid nanoparticle topical and transdermal delivery: a review on production, penetration mechanism to skin. CNANOM. 2019;09. doi: 10.2174/ 2468187309666190619113528.

Pardeike J, Hommoss A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1-2):170-84. doi: 10.1016/ j.ijpharm.2008.10.003, PMID 18992314.

Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery– a review of state of the art. Eur J Pharm Biopharm. 2000;50(1):161-77. doi: 10.1016/s0939-6411(00)00087-4, PMID 10840199.

Patel DK, Tripathy S, Nair SK, Kesharwani R. Nanostructured lipid carrier (NLC) a modern approach for topical delivery: a review. World J Pharm Pharm Sci. 2013;2(3):921-38.

Patel DK, Kesharwani R, Kumar V. Etodolac loaded solid lipid nanoparticle-based topical gel for enhanced skin delivery. Biocatal Agric Biotechnol. 2020;29. doi: 10.1016/ j.bcab.2020.101810.

Patel DK, Kesharwani R, Kumar V. Lipid nanoparticle topical and transdermal delivery: a review on production, penetration mechanism to skin. Int J Pharm Investig. 2019;9(4):148-53. doi: 10.5530/ijpi.2019.4.28.

Pardeike J, Hommoss A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1-2):170-84. doi: 10.1016/ j.ijpharm.2008.10.003, PMID 18992314.

Kesharwani R, Sachan A, Singh S, Patel D. Formulation and evaluation of solid lipid nanoparticle (SLN) based topical gel of etoricoxib. J App Pharm Sci. 2016:124-31. doi: 10.7324/ JAPS.2016.601017.

Patel DK, Kesharwani R, Al-Abbasi FA, Anwar F, Kumar V. Topical nanostructured lipid carrier (NLC) gel of etodolac: central composite design, optimization, in vitro skin penetration and dermatokinetic study. Latin American Journal of Pharmacy 2021;40(10):2487-97.

Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349-58. doi: 10.4103/0250-474X.57282, PMID 20502539.

Gaba B, Fazil M, Ali A, Baboota S, Sahni JK, Ali J. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv. 2015;22(6):691-700. doi: 10.3109/10717544.2014.898110, PMID 24670099.

Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2-3):165-96. doi: 10.1016/s0169-409x(01)00105-3, PMID 11311991.

Wu L, Zhao L, Su X, Zhang P, Ling G. Repaglinide-loaded nanostructured lipid carriers with different particle sizes for improving oral absorption: preparation, characterization, pharmacokinetics, and in situ intestinal perfusion. Drug Deliv. 2020;27(1):400-9. doi: 10.1080/10717544.2019.1689313, PMID 31729898.

Swidan SA, Ghonaim HM, Samy AM, Ghorab MM. Efficacy and in vitro cytotoxicity of nanostructured lipid carriers for paclitaxel delivery article info abstract. J Appl Pharm Sci. 2016;6(9):18-26.

Shi F, Wei Z, Zhao Y, Xu X. Nanostructured lipid carriers loaded with baicalin: an efficient carrier for enhanced antidiabetic effects. Pharmacogn Mag. 2016 Jul 1;12(47):198-202. doi: 10.4103/0973-1296.186347, PMID 27601850.

Maity S, Mukhopadhyay P, Kundu PP, Chakraborti AS. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals-an in vitro and in vivo approach. Carbohydr Polym. 2017 Aug 15;170:124-32. doi: 10.1016/j.carbpol.2017.04.066, PMID 28521977.

Deshkar S, Quazi N, Patil A, Poddar S. Effect of gelucire 44/14 on fluconazole solid lipid nanoparticles: formulation, optimization and in vitro characterization. Drug Deliv Lett. 2016 Apr 7;5(3):173-87. doi: 10.2174/221030310503160401121141.

Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian J Pharm Sci. 2017 Nov 1;12(6):532-41. doi: 10.1016/j.ajps.2017.07.002, PMID 32104366.

Kharwade RS, Mahajan NM. Formulation and evaluation of nanostructured lipid carriers based anti-inflammatory gel for topical drug delivery system. Asian J Pharm Clin Res. 2019 Apr 7;12:286-91.

Jahangir MA, Khan R, Sarim Imam S. Formulation of sitagliptin-loaded oral polymeric nano scaffold: process parameters evaluation and enhanced antidiabetic performance. Artif Cells Nanomed Biotechnol. 2018 Oct 31;46Suppl 1:66-78. doi: 10.1080/21691401.2017.1411933, PMID 29226729.

Lokhande A, Mishra S, Kulkarni R, Naik J. Development and evaluation of nateglinide loaded polycaprolactone nanoparticles. Micro Nanosystems. 2015 Jun 28;7(1):43-8. doi: 10.2174/1876402907666150624173231.

Yuan H, Wang LL, Du YZ, You J, Hu FQ, Zeng S. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf B Biointerfaces. 2007 Nov 15;60(2):174-9. doi: 10.1016/j.colsurfb.2007.06.011, PMID 17656075.

Czajkowska Kosnik A, Szymanska E, Czarnomysy R, Jacyna J, Markuszewski M, Basa A. Nanostructured lipid carriers engineered as topical delivery of etodolac: optimization and cytotoxicity studies. Materials (Basel). 2021 Feb 1;14(3):1-21. doi: 10.3390/ma14030596, PMID 33514018.

Dhome AG, Deshkar SS, Shirolkar SV. Gliclazide solid lipid nanoparticles: formulation, optimization and in vitro characterization. Pharm Reson. 2018;1:1.

Rawat MK, Jain A, Singh S. Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation. J Pharm Sci. 2011 Jun;100(6):2366-78. doi: 10.1002/jps.22435, PMID 21491449.

Date AA, Vador N, Jagtap A, Nagarsenker MS. Lipid nanocarriers (GeluPearl) containing amphiphilic lipid Gelucire 50/13 as a novel stabilizer: fabrication, characterization and evaluation for oral drug delivery. Nanotechnology. 2011 Jul 8;22(27):275102. doi: 10.1088/0957-4484/22/27/275102, PMID 21606564.

Teeranachaideekul V, Muller RH, Junyaprasert VB. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)-Effects of formulation parameters on physicochemical stability. International Journal of Pharmaceutics. 2007;340(1-2):198-206. doi: 10.1016/j.ijpharm.2007.03.022, PMID 17482778.

El-Housiny S, Shams Eldeen MAS, El-Attar YA, Salem HA, Attia D, Bendas ER, El-Nabarawi MA. Fluconazole-loaded solid lipid nanoparticles topical gel for the treatment of pityriasis versicolor: formulation and clinical study. Drug Delivery. 2018;25(1):78-90. doi: 10.1080/10717544.2017.1413444, PMID 29239242.

Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. Journal of Controlled Release. 1997;48:223-36. doi: 10.1016/S0168-3659(97)00046-1.

Purvis T, Mattucci ME, Crisp MT, Johnston KP, Williams RO. Rapidly dissolving repaglinide powders are produced by the ultra-rapid freezing process. AAPS PharmSciTech. 2007 Jul 20;8(3):E58. doi: 10.1208/pt0803058, PMID 17915808.

Kassem AA, Abd El-Alim SH, Basha M, Salama A. Phospholipid complex enriched micelles: A novel drug delivery approach for promoting the antidiabetic effect of repaglinide. Eur J Pharm Sci. 2017 Mar 1;99:75–-84. doi: 10.1016/j.ejps.2016.12.005, PMID 27998799.

Muller R. Cyclosporine-loaded solid lipid nanoparticles (SLN®): drug-lipid physicochemical interactions and characterization of drug incorporation. European Journal of Pharmaceutics and Biopharmaceutics. 2008;68(3):535-44. doi: 10.1016/j.ejpb.2007.07.006.

Marquele Oliveira F, de Almeida Santana DC, Taveira SF, Vermeulen DM, Moraes de Oliveira AR, da Silva RS, Lopez RFVMarquele-Oliveira F, Santana DC, Taveira SF, Vermeulen DM, de Oliveira AR, da Silva RS. Development of nitrosyl ruthenium complex-loaded lipid carriers for topical administration: improvement in skin stability and in nitric oxide release by visible light irradiation. Journal of Pharmaceutical and Biomedical Analysis. 2010;53(4):843-51. doi: 10.1016/j.jpba.2010.06.007, PMID 20634015.

Mohseni R, ArabSadeghabadi Z, Ziamajidi N, Abbasalipourkabir R, RezaeiFarimani A. Oral administration of resveratrol-loaded solid lipid nanoparticle improves insulin resistance through targeting expression of SNARE proteins in adipose and muscle tissue in rats with type 2 diabetes. Nanoscale Research Letters. 2019;14(1):227. doi: 10.1186/s11671-019-3042-7, PMID 31290033.

Vijayakumar MR, Kumari L, Patel KK, Vuddanda PR, Vajanthri KY, Mahto SK, Singh S. Intravenous administration of trans-resveratrol-loaded TPGS-coated solid lipid nanoparticles for prolonged systemic circulation, passive brain targeting and improved in vitro cytotoxicity against C6 glioma cell lines. RSC Advances. 2016;6(55):50336-48. doi: 10.1039/C6RA10777J.

Siepmann J, Siepmann F. Mathematical modeling of drug delivery. International Journal of Pharmaceutics. 2008;364(2):328-43. doi: 10.1016/j.ijpharm.2008.09.004, PMID 18822362.

Ebrahimi HA, Javadzadeh Y, Hamidi M, Jalali MB. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru. 2015;23(1):46. doi: 10.1186/s40199-015-0128-3, PMID 26392174.

Published

07-09-2022

How to Cite

KESHARWANI, R., PATEL, D. K., & YADAV, P. K. (2022). BIOAVAILABILITY ENHANCEMENT OF REPAGLINIDE USING NANO LIPID CARRIER: PREPARATION CHARACTERIZATION AND IN VIVO EVALUATION. International Journal of Applied Pharmaceutics, 14(5), 181–189. https://doi.org/10.22159/ijap.2022v14i5.45032

Issue

Section

Original Article(s)