APPROACHES TO THE SEARCH OF THE OPTIMUM PACKAGING OF EYE DROPS

Authors

  • IVAN SERGEEVICH IVANOV Department of Biotechnology and Industrial Pharmacy, MIREA-Russian Technological University, Moscow, Russia, 119454 https://orcid.org/0000-0002-1346-7588
  • ELENA OLEGOVNA BAKHRUSHINA Department of Pharmaceutical Technology, Sechenov University, Moscow, Russia, 119571 https://orcid.org/0000-0001-8695-0346
  • ANASTASIA ROMANOVNA TURAEVA Department of Pharmaceutical Technology, Sechenov University, Moscow, Russia, 119571 https://orcid.org/0000-0003-0707-4574
  • DENIS OLEGOVICH SHATALOV Department of Biotechnology and Industrial Pharmacy, MIREA-Russian Technological University, Moscow, Russia, 119454, JSC Institute of Pharmaceutical Technologies, Moscow, Russia 121353 https://orcid.org/0000-0003-4510-1721
  • ANNA VIKTOROVNA AYDAKOVA Department of Biotechnology and Industrial Pharmacy, MIREA-Russian Technological University, Moscow, Russia, 119454 https://orcid.org/0000-0002-2560-5028
  • DIANA ALEKSANDROVNA AKHMEDOVA Department of Biotechnology and Industrial Pharmacy, MIREA-Russian Technological University, Moscow, Russia, 119454 https://orcid.org/0000-0002-0951-939X
  • STANISLAV ANATOL’EVICH KEDIK Department of Biotechnology and Industrial Pharmacy, MIREA-Russian Technological University, Moscow, Russia, 119454

DOI:

https://doi.org/10.22159/ijap.2022v14i5.45402

Keywords:

Ophthalmology, Packaging, Adherence to treatment, Compliance, Pharmionic

Abstract

The purpose of this study is to find a unique ophthalmic packaging that takes into account modern requirements for both maintaining the quality and safety of the drug, compliance with therapy, and increasing the profitability and environmental friendliness of its production. Statistics from open international databases on drugs approved for ophthalmic therapy in 2022 are provided. The research criteria were a valid registration status, the type of packaging and the presence of a preservative in the composition of the eye drops. The results of statistical processing of databases of ministries of health of different countries have shown the relevance of monodose ophthalmic packaging, capable of long-term storage of the drug without preservatives. In many countries, particularly in Europe, many drugs in the form of a monodose containers are registered. On this basis, a unique aluminum-based monodose container design is proposed, eliminating the use of large quantities of plastic.

Downloads

Download data is not yet available.

References

SS, SV, Kumars S. Sterility testing procedure of ophthalmic ocusert aciclovir used for treating herpes simplex virus. Asian J Pharm Clin Res. 2017;10(10):344-6. doi: 10.22159/ajpcr.2017.v10i10.19216.

Deka M, Ahmed AB, Chakraborty J. Development, evaluation and characteristics of ophthalmic in situ gel system: a review. Int J Curr Pharm Sci. 2019;11(4):47-53. doi: 10.22159/ijcpr.2019v11i4.34949.

Preethi GB. Design and evaluation of controlled-release ocular inserts of brimonidine-tartrate and timolol maleate. Int J Pharm Pharm Sci. 2017;9(1):79-82.

Liu YC, Lin MT, Ng AHC, Wong TT, Mehta JS. Nanotechnology for the treatment of allergic conjunctival diseases. Pharmaceuticals (Basel). 2020 Oct 29;13(11):351. doi: 10.3390/ph13110351, PMID 33138064.

Bakhrushina EO, Anurova MN, Demina NB, Lapik IV, Turaeva AR, Krasnuk II. Ophthalmic drug delivery systems. Drug Dev Regist. 2021 Feb 25;10(1):57-66.

Arrigo A, Gambaro G, Fasce F, Aragona E, Figini I, Bandello F. Extended depth-of-focus (EDOF) AcrySof® IQ Vivity® intraocular lens implant: a real-life experience. Graefes Arch Clin Exp Ophthalmol. 2021 Sep;259(9):2717-22. doi: 10.1007/s00417-021-05245-6, PMID 34050809.

Hogan MJ. The preparation and sterilization of ophthalmic solutions. Calif Med. 1949 Dec;71(6):414-6. PMID 15408108.

Frith ML, Wright SE. Preservation of ophthalmic solutions; a critical evaluation. Br J Ophthalmol. 1955 Mar;39(3):174-7. doi: 10.1136/bjo.39.3.174, PMID 14363614.

Goldstein MH, Silva FQ, Blender N, Tran T, Vantipalli S. Ocular benzalkonium chloride exposure: problems and solutions. Eye (Lond). 2022 Feb;36(2):361-8. doi: 10.1038/s41433-021-01668-x, PMID 34262161.

Kim DW, Shin J, Lee CK, Kim M, Lee S, Rho S. Comparison of ocular surface assessment and adherence between preserved and preservative-free latanoprost in glaucoma: a parallel-grouped randomized trial. Sci Rep. 2021 Jul 22;11(1):14971. doi: 10.1038/s41598-021-94574-x, PMID 34294842.

Kwon J, Heo JH, Kim HM, Song JS. Comparison of cytotoxic effects on rabbit corneal endothelium between preservative-free and preservative-containing dorzolamide/timolol. Korean J Ophthalmol. 2015 Oct;29(5):344-50. doi: 10.3341/kjo.2015.29.5.344, PMID 26457041.

Paimela T, Ryhanen T, Kauppinen A, Marttila L, Salminen A, Kaarniranta K. The preservative polyquaternium-1 increases cytoxicity and NF-kappaB linked inflammation in human corneal epithelial cells. Mol Vis. 2012;18:1189-96. PMID 22605930.

Müllertz O, Hedengran A, Mouhammad ZA, Freiberg J, Nagymihaly R, Jacobsen J. Impact of benzalkonium chloride-preserved and preservative-free latanoprost eye drops on cultured human conjunctival goblet cells upon acute exposure and differences in physicochemical properties of the eye drops. BMJ Open Ophthalmol. 2021 Dec 20;6(1):e000892. doi: 10.1136/bmjophth-2021-000892, PMID 34993350.

Walsh K, Jones L. The use of preservatives in dry eye drops. Clin Ophthalmol. 2019 Aug 1;13:1409-25. doi: 10.2147/OPTH.S211611. PMID 31447543.

Datta S, Baudouin C, Brignole Baudouin F, Denoyer A, Cortopassi GA. The eye drop preservative benzalkonium chloride potently induces mitochondrial dysfunction and preferentially affects LHON mutant cells. Invest Ophthalmol Vis Sci. 2017 Apr 1;58(4):2406-12. doi: 10.1167/iovs.16-20903, PMID 28444329.

Rosin LM, Bell NP. Preservative toxicity in glaucoma medication: clinical evaluation of benzalkonium chloride-free 0.5% timolol eye drops. Clin Ophthalmol. 2013;7:2131-5. doi: 10.2147/OPTH.S41358, PMID 24204115.

Zhang R, Park M, Richardson A, Tedla N, Pandzic E, de Paiva CS. Dose-dependent benzalkonium chloride toxicity imparts ocular surface epithelial changes with features of dry eye disease. Ocul Surf. 2020 Jan;18(1):158-69. doi: 10.1016/j.jtos.2019.11.006, PMID 31740391.

Thakur N, Kumari J, Sharma M. Antimicrobial potential of herbal and chemical neonatal eye drops. Asian J Pharm Clin Res. 2018;11(11):319-23. doi: 10.22159/ajpcr.2018.v11i11.28026.

Choy CK, Cho P, Boost MV. Cytotoxicity and effects on metabolism of contact lens care solutions on human corneal epithelium cells. Clin Exp Optom. 2012 Mar;95(2):198-206. doi: 10.1111/j.1444-0938.2011.00687.x. PMID 22233282.

Economou MA, Laukeland HK, Grabska Liberek I, Rouland JF. Better tolerance of preservative-free latanoprost compared to preserved glaucoma eye drops the 12 mo real-life FREE study. Clin Ophthalmol. 2018 Nov 26;12:2399-407. doi: 10.2147/OPTH.S176605. PMID 30538423, PMCID PMC6263246.

Chawla R, Kellner JD, Astle WF. Acute infectious conjunctivitis in childhood. Paediatr Child Health. 2001 Jul;6(6):329-35. doi: 10.1093/pch/6.6.329, PMID 20084257, PMCID PMC2804756.

Brjesky VV, Maychuk YF, Petrayevsky AV, Nagorsky PG. Use of preservative-free hyaluronic acid (Hylabak(®)) for a range of patients with dry eye syndrome: experience in Russia. Clin Ophthalmol. 2014 Jun 18;8:1169-77. doi: 10.2147/OPTH.S47713. PMID 24970995, PMCID PMC4069143.

Saisyo A, Shimono R, Oie S, Kimura K, Furukawa H. The risk of microbial contamination in multiple-dose preservative-free ophthalmic preparations. Biol Pharm Bull. 2017;40(2):182-6. doi: 10.1248/bpb.b16-00688, PMID 28154258.

Jokl DH, Wormser GP, Nichols NS, Montecalvo MA, Karmen CL. Bacterial contamination of ophthalmic solutions used in an extended care facility. Br J Ophthalmol. 2007 Oct;91(10):1308-10. doi: 10.1136/bjo.2007.115618. PMID 17475711, PMCID PMC2001007.

Rahman MQ, Tejwani D, Wilson JA, Butcher I, Ramaesh K. Microbial contamination of preservative free eye drops in multiple application containers. Br J Ophthalmol. 2006 Feb;90(2):139-41. doi: 10.1136/bjo.2005.078386, PMID 16424520, PMCID PMC1860184.

Nentwich MM, Kollmann KH, Meshack J, Ilako DR, Schaller UC. Microbial contamination of multi-use ophthalmic solutions in Kenya. Br J Ophthalmol. 2007 Oct;91(10):1265-8. doi: 10.1136/bjo.2007.116897. PMID 17475714.

Tsegaw A, Tsegaw A, Abula T, Assefa Y. Bacterial contamination of multi-dose eye drops at ophthalmology department, university of Gondar, Northwest Ethiopia. Middle East Afr J Ophthalmol. 2017 Apr-Jun;24(2):81-6. doi: 10.4103/meajo.MEAJO_308_16, PMID 28936051.

Tamrat L, Gelaw Y, Beyene G, Gize A. Microbial contamination and antimicrobial resistance in use of ophthalmic solutions at the department of ophthalmology, Jimma University specialized hospital, Southwest Ethiopia. Can J Infect Dis Med Microbiol. 2019 Apr 15;2019:5372530. doi: 10.1155/2019/5372530, PMID 31178944.

Schneider KJ, Hollenhorst CN, Valicevic AN, Niziol LM, Heisler M, Musch DC. Impact of the support, educate, empower personalized glaucoma coaching program pilot study on eye drop instillation technique and self-efficacy. Ophthalmol Glaucoma. 2021 Jan-Feb;4(1):42-50. doi: 10.1016/j.ogla.2020.08.003, PMID 32781286.

Mehuys E, Delaey C, Christiaens T, Van Bortel L, Van Tongelen I, Remon JP. Eye drop technique and patient-reported problems in a real-world population of eye drop users. Eye (Lond). 2020 Aug;34(8):1392-8. doi: 10.1038/s41433-019-0665-y, PMID 31690823.

Lampert A, Bruckner T, Haefeli WE, Seidling HM. Improving eye-drop administration skills of patients-A multicenter parallel-group cluster-randomized controlled trial. Plos One. 2019 Feb 21;14(2):e0212007. doi: 10.1371/journal.pone.0212007, PMID 30789934.

Naito T, Namiguchi K, Yoshikawa K, Miyamoto K, Mizoue S, Kawashima Y. Factors affecting eye drop instillation in glaucoma patients with visual field defect. Plos One. 2017 Oct 12;12(10):e0185874. doi: 10.1371/journal.pone.0185874, PMID 29023521.

da Costa AX, Yu MCZ, de Freitas D, Cristovam PC, LaMonica LC, Dos Santos VR. Microbial cross-contamination in multidose eyedrops: the impact of instillation angle and bottle geometry. Transl Vis Sci Technol. 2020 Jun 5;9(7):7. doi: 10.1167/tvst.9.7.7, PMID 32832214.

Marx D, Birkhoff M. Multi-dose container for nasal and ophthalmic drugs: A preservative free future? In: Rundfeldt C, editor. Drug development-A case study based insight into modern strategies. London: IntechOpen; 2011. p. 509-25.

Degenhard M, Birkhoff M. Ophthalmic squeeze dispenser–eliminating the need for additives in multidose preservative-free eyecare formulations. Drug Dev and Deliv. 2017 Oct;17 (7):40-4.

Teping C, Wiedemann B. The COMOD system. A preservative-free multidose container for eyedrops. Klin Monbl Augenheilkd. 1994;205(4):210-7. doi: 10.1055/s-2008-1045518. PMID 7823521.

BfArM-The federal institute for drugs and medical devices. Pharmnet-Bund; 2022.

ANSM-National Agency for the Safety of Medicines and Health Products of France. Available from: http://agence-prd.ansm.sante.fr. [Last accessed on 14 Apr 2022]

Swedish Medical LT, Products Agency. Lakemedelsverket; 2022.

GRLS-State Register of Medicines of Russian Federation; 2022.

CIM. A-Spanish agency for medicines and medical devices; 2022.

FIMEA-Finnish Medicines Agency; 2022.

Gov HK. Drug office Department of Health; 2022.

Data. Gov. Government of Singapore. Available from: https://data.gov.sg. [Last accessed on 14 Apr 2022].

FDA–US. Food and Drug Administration. Available from: https://www.accessdata.fda.gov. [Last accessed on 14 Apr 2022]

NPRA-National Pharmaceutical Regulatory Agency of Ministry of Health Malaysia. Available from: https://www.npra.gov.my. [Last accessed on 14 Apr 2022].

Haack D, Koeberle M. Pharmaceutical packaging–how advances in pharmaceutical packaging are better meeting patients’ needs. Drug Dev Deliv. 2017;17(6):20-4.

Singh BN. Product development, manufacturing, and packaging of solid dosage forms under QbD and PAT paradigm: DOE case studies for industrial applications. AAPS PharmSciTech. 2019 Sep 16;20(8):313. doi: 10.1208/s12249-019-1515-8, PMID 31529232.

Mahato RI, Narang AS. Pharmaceutical dosage forms and drug delivery: revised and expanded. 3rd ed. Boca Raton: CRC Press; 2003.

Brandt JD. Human factors and ophthalmic drug packaging: time for a global standard. Ophthalmology. 2015;122(12):2368-70. doi: 10.1016/j.ophtha.2015.08.035, PMID 26592669.

Shukla AG, Muir KW, Myers JS. Pivoting from traditional eye drop administration. Ophthalmol Glaucoma. 2021;4(5):437-9. doi: 10.1016/j.ogla.2021.04.007, PMID 34090849.

Huang S, Andrew N. Improving eye drop adherence: a simple technique using a cable tie. Acta Ophthalmol. 2020;98(3):e396. doi: 10.1111/aos.14301, PMID 31686428.

Pilchik R. Pharmaceutical blister packaging, Part I. Pharm. Technol. 2000;24(11):68-78.

Global ophthalmic packaging market by dose (multidose and single dose), by material (plastic, glass and other materials), by type (prescription and OTC), by regional outlook, industry analysis report and forecast, 2021-2027. Available from: https://www.kbvresearch.com/ophthalmic-packaging-market. [Last accessed on 14 Apr 2022]

Bouwman Boer Y, Fenton May V, Le Brun P. Practical pharmaceutics: an international guideline for the preparation, care and use of Vedicinal products. 1st ed. Berlin: Springer Cham; 2015. p. 501-20.

Blow fill seal technology market. Available from: https://www.infiniumglobalresearch.com/agriculture/global-blow-fill-seal-market. [Last accessed on 14 Apr 2022]

Pearlman R, Wang JY. Case Hhistories. In: Pearlman R, Wang JY. editors. Formulation, characterization, and stability of protein drugs: case histories. Berlin: Springer; 2002. p. 393-422.

Interview between; 2018 Oct. Innovations by Brevetti Angela in the pharmaceutical packaging industry Norai R, editor of Sanat Bandi magazine, with marketing manager of Italian company Brevetti Angel, designer and manufacturer of Blow-Fill-Seal (BFS) devices. Available from: https://iranpack.ir/news/reports/2018/10/brevetti-angela-kabbur-iran-1. [Last accessed on 17 Aug 2022]

Hapa AG. For the first time, a CMYK digital printing process for BFS products. Available from: https://www.hapa.ch/en/news/for-the-first-time-a-cmyk-digital-printing-process-for-bfs-product. [Last accessed on 14 Apr 2021]

Liu W, Faulhaber S, Sane SU, Lam P. Biopharmaceutical manufacturing using blow–fill–seal technology. BioPpharm Int. 2011 Jul 1;24(7):22-9.

Vasilyev IYu, Ananyev VV, Kolpakova VV, Sardzhveladze AS. Development of technology for producing biodegradable hybrid composites based on polyethylene, starch, and monoglycerides. Fine Chem Technol. 2020;15(6):44-55. doi: 10.32362/2410-6593-2020-15-6-44-55.

Global blister packs market. Available from: https://www.databridgemarketresearch.com/reports/global-blister-packs-market. [Last accessed on 14 Apr2022].

Anbarasu K, Sivakumar P. Сatalytic pyrolysis of dairy industrial waste ldpe film into fuel. International Journal of Chemistry Research. 2012;3(1):52-5.

Global blister packaging market. Available from: https://www.marknteladvisors.com/research-library/global-blister-packaging-market.html.

Global ophthalmic packaging market. Available from: https://www.kbvresearch.com/ophthalmic-packaging-market. [Last accessed on 14 Apr 2022]

Wagner JR. Multilayer flexible packaging. 2nd ed. Norwich: William Andrew Publishing; 2016.

Sudoł E, Kozikowska E. Mechanical properties of polyurethane adhesive bonds in a mineral wool-based external thermal insulation composite system for timber frame buildings. Materials (Basel). 2021;14(10):2527. doi: 10.3390/ma14102527, PMID 34067969.

Ivanov IS. Microfluidic synthesis of the substance hydrosuccinate oligohexamethylene guanidine a and the creation of an ophthalmic drug based on it [dissertation]. Moscow: MIREA-Russian Technological University; 2021.

Sterile blister. Available from: https://www.cphi-online.com/sterile-blister-prod975497.html.

Anitua E, de la Fuente M, Alcalde I, Sanchez C, Merayo Lloves J, Muruzabal F. Development and optimization of freeze-dried eye drops derived from plasma rich in growth factors technology. Transl Vis Sci Technol. 2020 Jun 25;9(7):35. doi: 10.1167/tvst.9.7.35, PMID 32832240.

Published

07-09-2022

How to Cite

IVANOV, I. S., BAKHRUSHINA, E. O., TURAEVA, A. R., SHATALOV, D. O., AYDAKOVA, A. V., AKHMEDOVA, D. A., & ANATOL’EVICH KEDIK, S. (2022). APPROACHES TO THE SEARCH OF THE OPTIMUM PACKAGING OF EYE DROPS. International Journal of Applied Pharmaceutics, 14(5), 1–7. https://doi.org/10.22159/ijap.2022v14i5.45402

Issue

Section

Review Article(s)