OPTIMIZATION, FORMULATION AND CHARACTERIZATION OF NANO BASED TDDS OF EPLERENONE
DOI:
https://doi.org/10.22159/ijap.2023v15i1.45433Keywords:
TDDS, Eplerenone nanoparticle, ERS 100, Transdermal matrixAbstract
Objective: The proposed work was aimed to formulation, characterization and optimization of transdermal patches of nanoparticles of eplerenone for efficient transdermal delivery of the drug.
Methods: Eplerenone nanoparticles transdermal patches were formulated by the casting evaporation method. Transdermal patches were made using combinations of hydroxypropyl methylcellulose (HPMC), Eudragit RS 100. Physical characterization evaluation (organoleptic properties, pH, weight uniformity, thickness uniformity, percent moisture content, and tensile strength) was then performed. The permeation of eplerenone nanoparticles into the skin was evaluated using Franz diffusion cell.
Results: Eplerenone nanoparticles transdermal patches could be formulated by the casting evaporation method with the thickness of the patches ranged from 0.10±0.11 mm to 0.15±0.54 mm. The average weight of the patches 4 cm2 patches ranged from 350±0.202 mg to 386±0.527 mg, and the percent moisture content ranged from 1.0 to 6.0%. Folding endurance of prepared patches was in the range of 355±0.20 to 368±0.20. Prepared batches NS1 to NS9 evaluated for percentage moisture uptake and loss as well as for pH measurement. The result of in vitro drug release study for batch NS9 containing 30 %/cm 2/h and 87.74 % released in 16 h.
Conclusion: All patches met the requirement of the physical characterization for the transdermal patch.
Downloads
References
Oza NA, Sahu AR, Patel DM, Patel PU, Patel LD, Koshia HG. Transdermal patch of carvedilol by 32 full factorial design studies on optimization of reservoir-type transdermal patch using carvedilol using 3 2 full factorial design. Int J Res Med. 2013;2(4).
Prajapati ST, Patel CG, Patel CN. Formulation and evaluation of transdermal patch of repaglinide. ISRN Pharm. 2011;2011:651909. doi: 10.5402/2011/651909. PMID 22389856.
Patel RP, Professor A, Patel G, Patel H, Baria K, Patel AS. Dosage forms and tech. Res J Pharm Dosage Forms Technol. 2009. p. 1.
McDaid DM, Deasy PB. Formulation development of a transdermal drug delivery system for amlodipine base. International Journal of Pharmaceutics. 1996 May 14;133(1-2):71-83. doi: 10.1016/0378-5173(95)04412-4.
Nayak B, Pattanayak D, Ellaiah P, Das S. Formulation design preparation and in vitro characterization of nebivolol transdermal patches. Asian J Pharm. 2011 Jul;5(3):175-82. doi: 10.4103/0973-8398.91994.
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261-8. doi: 10.1038/nbt.1504.
Anilreddy DRB. In vitro characterzatioan and evaluation of transdermal drug delivery system for metoprolol tartarate. Asian Journal of Pharmaceutical Research and Health Care. 2010;2(4):325-9.
Mishra AD, Khunt DM, Ghayal AH, Patel CN, Shah DR. Formulation and optimization of ethosomes for transdermal delivery of felodipine. Res J Pharm Technol. 2012;5(12).
Abdallah MH, Abu Lila ASA, Shawky SM, Almansour K, Alshammari F, Khafagy ES. Experimental design and optimization of nano-transfersomal gel to enhance the hypoglycemic activity of silymarin. Polymers (Basel). 2022 Feb 1;14(3). doi: 10.3390/polym14030508, PMID 35160498.
Mishra AD, Patel CN, Shah DR. Formulation and optimization of ethosomes for transdermal delivery of ropinirole hydrochloride. Curr Drug Deliv. 2013 Dec 27;10(5):500-16. doi: 10.2174/1567201811310050002, PMID 23410071.
Rao MR, Sonavane V, Kulkarni S, Magar M, Zope A, Karanjkar P. Design of transdermal patch of ketoprofen by full factorial design for treatment of rheumatoid arthritis. J Drug Delivery Ther. 2019 Mar 15;9(2):197-205. doi: 10.22270/jddt.v9i2.2549.
Lankaranian D, Reis R, Henderer JD, Choe S, Moster MR. Comparison of single thickness and double thickness processed pericardium patch graft in glaucoma drainage device surgery: a single surgeon comparison of outcome. J Glaucoma. 2008 Jan;17(1):48-51. doi: 10.1097/IJG.0b013e318133fc49, PMID 18303385.
Jamakandi VG, Mulla JS, Vinay BL, Shivakumar H. Formulation, characterization, and evaluation of matrix-type transdermal patches of a model antihypertensive drug. Asian J Pharm. 2009;3(1). doi: 10.4103/0973-8398.49177.
Guyot M, Fawaz F. Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol. Int J Pharm. 2000 Jun 20;204(1-2):171-82. doi: 10.1016/s0378-5173(00)00494-4, PMID 11012001.
Mittal A, Sara US, Ali A, Mohammed A. Design, development, physicochemical, in vitro and in vivo evaluation of monolithic matrix type transdermal patches containing nitrendipine. Pharm Dev Technol. 2009;14(4):422-34. doi: 10.1080/10837450902748388, PMID 19630699.
Shinde R, Velraj M. Formulation, optimization, and characterization of transdermal drug delivery systems containing eplerenone. Int J Appl Pharm. 2022 Jan 7;14(1):198-207. doi: 10.22159/ijap.2022v14i1.42827.
Hardainiyan S, Kumar K, Nandy BC, Saxena R. Design, formulation and in vitro drug release from transdermal patches containing imipramine hydrochloride as model drug. Int J Pharm Pharm Sci. 2017 Jun 1;9(6):220. doi: 10.22159/ijpps.2017v9i6.16851.
Pastore MN, Kalia YN, Horstmann M, Roberts MS. Transdermal patches: history, development and pharmacology. Br J Pharmacol. 2015;172(9):2179-209. doi: 10.1111/bph.13059, PMID 25560046.
Jalhan S, Kaur K, Kaur P, K Jain U. Formulation and in vitro evaluation of transdermal matrix patches of doxophylline. Asian J Pharm Clin Res. 2016 Sep 1;9(5):140. doi: 10.22159/ajpcr.2016.v9i5.12774.
MA, Aa S, SP. Separation of flavonoids from alcoholic extract of Salvadora persica by HPLC. Int J Pharm Pharm Sci. 2013 Apr 1;5(Suppl 4):207–10.
Furuishi T, Io T, Fukami T, Suzuki T, Tomono K. Formulation and in vitro evaluation of pentazocine transdermal delivery system. Biol Pharm Bull. 2008 Jul; 31(7):1439–43.
Gutschke E, Bracht S, Nagel S, Weitschies W. Adhesion testing of transdermal matrix patches with a probe tack test-in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2010 Aug;75(3):399-404. doi: 10.1016/j.ejpb.2010.03.016, PMID 20350598.
Patel B. Transdermal patch: A discrete dosage form. Int J Curr. 2011 Jan 1.
Pongjanyakul T, Prakongpan S, Priprem A. Acrylic matrix type nicotine transdermal patches: in vitro evaluations and batch-to-batch uniformity. Drug Dev Ind Pharm. 2003;29(8):843-53. doi: 10.1081/ddc-120024180, PMID 14570305.
Ahmed TA, Alay AMS, Okbazghi SZ, Alhakamy NA. Two-step optimization to develop a transdermal film loaded with dapoxetine nanoparticles: a promising technique to improve drug skin permeation. Dose-Response. 2020 Apr 1;18(2):1559325820923859. doi: 10.1177/1559325820923859, PMID 32425728.
Sharma S, Aggarwal G, Dhawan S. Design and evaluation of olanzapine transdermal patches containing vegetable oils as permeation enhancers. Der Pharmacia Lettre. 2010;2(6):84-98.
Gannu R, Vishnu YV, Kishan V, Rao YM. Development of nitrendipine transdermal patches: in vitro and ex vivo characterization. Curr Drug Deliv. 2007;4(1):69-76. doi: 10.2174/156720107779314767. PMID 17269919.
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez Torres MDP, Acosta-Torres LS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi: 10.1186/s12951-018-0392-8, PMID 30231877.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Ramesh Shinde, Malarkodi Velraj
This work is licensed under a Creative Commons Attribution 4.0 International License.