A REVIEW ON PRESENT AND FUTURE OUTLOOK OF 3D PRINTING IN TRANSDERMAL DRUG DELIVERY SYSTEMS

Authors

  • SOUMYADIP GHOSH Department of Pharmaceutics, Calcutta Institute of Pharmaceutical Technology and AHS, Uluberia, Howrah, West Bengal 711316
  • DEBGOPAL GANGULY School of Pharmacy, Seacom Skills University, Bolpur, Birbhum, West Bengal 731236
  • MADHUMITA BANERJEE School of Pharmacy, Seacom Skills University, Bolpur, Birbhum, West Bengal 731236
  • PUBALI CHAKRABORTY School of Pharmacy, Seacom Skills University, Bolpur, Birbhum, West Bengal 731236

DOI:

https://doi.org/10.22159/ijap.2022.v14ti.15

Keywords:

History of 3D Printing, 3D printing, Pharmaceutics, TDDS, Applications, Present and Future outlook, Advanced drug delivery technology

Abstract

The suitability of different printing processes for the direct or indirect printing of microneedle arrays, as well as the modification of their surface with drug-containing coatings, has been investigated. 3D printing refers to a group of technologies that use numerically controlled apparatus to create a physical object from a virtual representation. The transdermal route has been introduced as an alternative to the bolus system. The skin is also identified to pose a barrier to permit molecules. The loss that occurred is compensated by transdermal delivery. 3D printing has several advantages in terms of waste reduction, design flexibility, and lowering the high cost. The compatibility of 3D printing techniques with printed medicine products is a factor in their selection. The variety of printable materials that are presently being used or could be utilized for 3D printing of transdermal drug delivery (TDD) devices. 3D printing has the potential to change today's "one size fits all" production and be used across the medication development process. 3D printing technology in the field of transdermal drug development as the system can be advanced in such as way that concentration can be increased or decreased with various drugs used in the printed featuring layers to enhancement of therapeutic efficacy. The impact and limitations of using 3D printing as a production process for transdermal drug delivery devices are required to be evaluated. This review discusses the present and future overlook of 3D printing technology of transdermal drug delivery systems and some advantages and disadvantages of 3D printing technology over conventional drug delivery approach.

Downloads

Download data is not yet available.

References

Jacob J, Haponiuk JT, Thomas S, Gopi S. Biopolymer based nanomaterials in drug delivery systems: a review. Mater Today Chem. 2018;9:43-55. doi: 10.1016/j.mtchem.2018.05.002.

Kumar DVK, Kalaiyarasi JP. Drawback of chimerism analysis by XY-fluorescence in situ hybridization: deception of a relapse. Indian J Med Paediatr Oncol. 2020;41(4):621-3. doi: 10.4103/ijmpo.ijmpo_60_20.

Zhou X, Hao Y, Yuan L, Pradhan S, Shrestha K, Pradhan O. Nano-formulations for transdermal drug delivery: a review. Chin Chem Lett. 2018;29(12):1713-24. doi: 10.1016/j.cclet.2018.10.037.

Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics. 2020 Sep 9;12(9):855. doi: 10.3390/pharmaceutics12090855, PMID 32916782, PMCID PMC7559928.

Chaurasiya P, Ganju E, Upmanyu N, Ray SK, Jain P. Transfersomes: a novel technique for transdermal drug delivery. J Drug Delivery Ther. 2019;9(1):279-85. doi: 10.22270/jddt.v9i1.2198.

Ramadon D, McCrudden MTC, Courtenay AJ, Donnelly RF. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res. 2022;12(4):758-91. doi: 10.1007/s13346-021-00909-6. PMID 33474709.

Zeeshan F, Madheswaran T, Pandey M, Gorain B. Three-dimensional (3-D) printing technology exploited for the fabrication of drug delivery systems. Curr Pharm Des. 2018;24(42):5019-28. doi: 10.2174/1381612825666190101111525, PMID 30621558.

Mason J, Visintini S, Quay T. An overview of clinical applications of 3-D printing and bioprinting. CADTH Issues in Emerging. Health Communications Technologies. 2019.

Clarissa WH, Chia CH, Zakaria S, Evyan YC. Recent advancement in 3-D printing: nanocomposites with added functionality. Prog Addit Manuf. 2022;7(2):325-50. doi: 10.1007/s40964-021-00232-z.

Horst DJ. 3D printing of pharmaceutical drug delivery systems. Arch Org Inorg Chem Sci. 2018;1(2):65-9. doi: 10.32474/AOICS.2018.01.000109.

Beg S, Almalki WH, Malik A, Farhan M, Aatif M, Rahman Z. 3D printing for drug delivery and biomedical applications. Drug Discov Today. 2020 Sep;25(9):1668-81. doi: 10.1016/j.drudis.2020.07.007. PMID 32687871.

Elkasabgy NA, Mahmoud AA, Maged A. 3D printing: an appealing route for customized drug delivery systems. Int J Pharm. 2020;588:119732. doi: 10.1016/j.ijpharm. 2020.119732, PMID 32768528.

Souto EB, Campos JC, Filho SC, Teixeira MC, Martins Gomes C, Zielinska A. 3D printing in the design of pharmaceutical dosage forms. Pharm Dev Technol. 2019 Oct;24(8):1044-53. doi: 10.1080/10837450.2019.1630426. PMID 31180272.

Basit AW, Gaisford S. 3D printing of pharmaceuticals. Springer; 2018.

Su A, Al’Aref SJ. History of 3D printing. 3D printing applications in cardiovascular medicine. Elsevier; 2018. p. 1-10.

Swennen GRJ, Pottel L, Haers PE. Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks. Int J Oral Maxillofac Surg. 2020 May;49(5):673-7. doi: 10.1016/j.ijom.2020.03.015. PMID 32265088, PMCID PMC7132499.

Kotta S, Nair A, Alsabeelah N. 3D printing technology in drug delivery: recent progress and application. Curr Pharm Des. 2018;24(42):5039-48. doi: 10.2174/1381612825666181206123828, PMID 30520368.

Wang J, Zhang Y, Aghda NH, Pillai AR, Thakkar R, Nokhodchi A. Emerging 3D printing technologies for drug delivery devices: current status and future perspective. Adv Drug Deliv Rev. 2021 Jul;174:294-316. doi: 10.1016/j.addr.2021.04.019. PMID 33895212.

Vithani K, Goyanes A, Jannin V, Basit AW, Gaisford S, Boyd BJ. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm Res. 2018 Nov 7;36(1):4. doi: 10.1007/s11095-018-2531-1, PMID 30406349.

Cordeiro AS, Tekko IA, Jomaa MH, Vora L, McAlister E, Volpe Zanutto F. Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: application in the development of polymeric drug delivery systems. Pharm Res. 2020 Aug 27;37(9):174. doi: 10.1007/s11095-020-02887-9, PMID 32856172, PMCID PMC7452932.

Mohanasundaram S, Rangarajan N, Sampath V, Porkodi K, Prakash MVD, Monicka N. GC-MS identification of anti-inflammatory and anticancer metabolites in edible milky White mushroom (Calocybe indica) against human breast cancer (MCF-7) cells. Res J Pharm Technol. 2021;14(8):4300-6.

Svenskaya YI, Genina EA, Parakhonskiy BV, Lengert EV, Talnikova EE, Terentyuk GS. A simple non-invasive approach toward efficient transdermal drug delivery based on biodegradable particulate system. ACS Appl Mater Interfaces. 2019 May 15;11(19):17270-82. doi: 10.1021/acsami.9b04305. PMID 30977624.

Alam MS, Akhtar A, Ahsan I, Shafiq-Un-Nabi S. Pharmaceutical Product Development exploiting 3D printing technology: conventional to novel drug delivery system. Curr Pharm Des. 2018;24(42):5029-38. doi: 10.2174/1381612825666190206195808, PMID 30727872.

Mohanasundaram S, Rangarajan N, Sampath V, Porkodi K, Pennarasi M. GC-MS and HPLC analysis of antiglycogenolytic and glycogenic compounds in kaempferol 3–O–gentiobioside containing Senna alata L leaves in experimental rats. Transl Metab Syndr Res. 2021;4:10-7. doi: 10.1016/j.tmsr.2021.07.001.

Economidou SN, Douroumis D. 3D printing as a transformative tool for microneedle systems: recent advances, manufacturing considerations and market potential. Adv Drug Deliv Rev. 2021 Jun;173:60-9. doi: 10.1016/j.addr.2021.03.007. PMID 33775705.

Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and customizable method for fabrication of high-aspect-ratio microneedle molds using low-cost 3D printing. Microsyst Nanoeng. 2019 Sep 9;5:42. doi: 10.1038/s41378-019-0088-8, PMID 31645996, PMCID PMC6799892.

Wicker RJ, Kumar G, Khan E, Bhatnagar A. Emergent green technologies for cost-effective valorization of microalgal biomass to renewable fuel products under a biorefinery scheme. Chem Eng J. 2021;415:128932. doi: 10.1016/j.cej.2021.128932.

Kawano M, Wang XY, Ren Q. editors. New cost-effective via-last approach by. One-step TSV after wafer stacking for 3D memory applications 69th Electronic Components and Technology Conference (ECTC). IEEE Publications; 2019.

Jain A, Bansal KK, Tiwari A, Rosling A, Rosenholm JM. Role of polymers in 3D printing technology for drug delivery–an overview. Curr Pharm Des. 2018;24(42):4979-90. doi: 10.2174/1381612825666181226160040, PMID 30585543.

Wang Y, Wang Q, Luo S, Chen Z, Zheng X, Kankala RK. 3D bioprinting of conductive hydrogel for enhanced myogenic differentiation. Regen Biomater. 2021;8(5):rbab035. doi: 10.1093/rb/rbab035, PMID 34408909.

Sikka MP, Midha VK. The role of biopolymers and biodegradable polymeric dressings in managing chronic wounds. Advanced Textiles for Wound Care. Elsevier. 2019:463-88.

Augustine R, Rehman SRU, Ahmed R, Zahid AA, Sharifi M, Falahati M. Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int J Biol Macromol. 2020;156:153-70. doi: 10.1016/j.ijbiomac.2020.03.207, PMID 32229203.

Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf. 2019;35:1286-96. doi: 10.1016/j.promfg.2019.06.089.

Yu DG, Shen XX, Branford White C, Zhu LM, White K, Yang XL. Novel oral fast-disintegrating drug delivery devices with predefined inner structure fabricated by three-dimensional printing. J Pharm Pharmacol. 2009 Mar;61(3):323-9. doi: 10.1211/jpp/61.03.0006, PMID 19222904.

Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Control Release. 1996;40(1-2):77-87. doi: 10.1016/0168-3659(95)00173-5.

El Aita I, Breitkreutz J, Quodbach J. On-demand manufacturing of immediate-release levetiracetam tablets using pressure-assisted microsyringe printing. Eur J Pharm Biopharm. 2019 Jan;134:29-36. doi: 10.1016/j.ejpb.2018.11.008. PMID 30439504.

Mohammed AA, Algahtani MS, Ahmad MZ, Ahmad J. Optimization of semisolid extrusion (pressure-assisted microsyringe)-based 3D printing process for advanced drug delivery application. Annals of 3D Printed Medicine. 2021;2:100008. doi: 10.1016/j.stlm.2021.100008.

Solanki NG, Tahsin M, Shah AV, Serajuddin ATM. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: screening polymers for drug release, drug-polymer miscibility and printability. J Pharm Sci. 2018 Jan;107(1):390-401. doi: 10.1016/j.xphs.2017.10.021. PMID 29066279.

Goyanes A, Kobayashi M, Martinez Pacheco R, Gaisford S, Basit AW. Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm. 2016 Nov 30;514(1):290-5. doi: 10.1016/j.ijpharm.2016.06.021. PMID 27863674.

Mohanasundaram S, Victor AD, Prasad M, Magesh R, Sivakumar K, Subathra M. Pharmacological analysis of a hydroethanolic extract of Senna alata (L.) for in vitro free radical scavenging and cytotoxic activities against Hep G2 cancer cell line. Pak J Pharm Sci. 2019;32(3):931-4.

Cui M, Pan H, Fang D, Qiao S, Wang S, Pan W. Fabrication of high drug loading levetiracetam tablets using semi-solid extrusion 3D printing. J Drug Deliv Sci Technol. 2020;57:101683. doi: 10.1016/j.jddst.2020.101683.

Fang D, Yang Y, Cui M, Pan H, Wang L, Li P. Three-dimensional (3D)-printed zero-order released platform: a novel method of personalized dosage form design and manufacturing. AAPS PharmSciTech. 2021 Jan 6;22(1):37. doi: 10.1208/s12249-020-01886-8, PMID 33409925.

Tagami T, Ito E, Kida R, Hirose K, Noda T, Ozeki T. 3D printing of gummy drug formulations composed of gelatin and an HPMC-based hydrogel for pediatric use. Int J Pharm. 2021 Feb 1;594:120118. doi: 10.1016/j.ijpharm.2020.120118. PMID 33326827.

Yeung C, Chen S, King B, Lin H, King K, Akhtar F. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics. 2019 Dec 11;13(6):064125. doi: 10.1063/1.5127778, PMID 31832123, PMCID: PMC6906119.

Elahpour N, Pahlevanzadeh F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F. 3D printed microneedles for transdermal drug delivery: A brief review of two decades. Int J Pharm. 2021 Mar 15;597:120301. doi: 10.1016/j.ijpharm.2021.120301. Epub 2021 Feb 1. PMID: 33540018.

Economidou SN, Lamprou DA, Douroumis D. 3D printing applications for transdermal drug delivery. Int J Pharm. 2018 Jun 15;544(2):415-24. doi: 10.1016/j.ijpharm.2018.01.031. Epub 2018 Jan 20. PMID: 29355656.

Sirbubalo M, Tucak A, Muhamedagic K, Hindija L, Rahic O, Hadziabdic J, Cekic A, Begic Hajdarevic D, Cohodar Husic M, Dervisevic A, Vranic E. 3D printing-a "”Touch-Button"” approach to manufacture microneedles for transdermal drug delivery. Pharmaceutics. 2021 Jun 22;13(7):924. doi: 10.3390/pharmaceutics13070924, PMID: 34206285, PMCID: PMC8308681.

Ventola CL. Medical applications for 3D printing: current and projected uses. P T. 2014;39(10):704-11. PMID 25336867.

Rangarajan N, Sangeetha R, Mohanasundaram S, Sampath, Porkodi K, Dass Prakash MV. Additive inhibitory effect of the peels of Citrus limon and Citrus sinensis against amylase and glucosidase activity. IJRPS 2020;11(4):6876-80. doi: 10.26452/ijrps.v11i4.3661.

Pastore MN, Kalia YN, Horstmann M, Roberts MS. Transdermal patches: history, development and pharmacology. Br J Pharmacol. 2015 May;172(9):2179-209. doi: 10.1111/bph.13059. Epub 2015 Mar 18. PMID: 25560046, PMCID: PMC4403087.

Reddy Dumpa N, Bandari S, A Repka M. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printing. Pharmaceutics. 2020 Jan 8;12(1):52. doi: 10.3390/pharmaceutics12010052, PMID 31936212, PMCID PMC7023033.

Gbureck U, Vorndran E, Muller FA, Barralet JE. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release. 2007 Sep 26;122(2):173-80. doi: 10.1016/j.jconrel.2007.06.022. Epub 2007 Jun 30. PMID: 17655962.

Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015 Nov 10;217:308-14. doi: 10.1016/j.jconrel.2015.09.028. Epub 2015 Sep 25. PMID: 26390808.

Lee BK, Yun YH, Choi JS, Choi YC, Kim JD, Cho YW. Fabrication of drug-loaded polymer microparticles with arbitrary geometries using a piezoelectric inkjet printing system. Int J Pharm. 2012 May 10;427(2):305-10. doi: 10.1016/j.ijpharm.2012.02.011. Epub 2012 Feb 15. PMID: 22366486.

Sivakumar S, Mohanasundaram S, Rangarajan N, Sampath V, Velayutham Dass Prakash MV. In silico prediction of interactions and molecular dynamics simulation analysis of Mpro of a severe acute respiratory syndrome caused by novel coronavirus 2 with the FDA-approved nonprotein antiviral drugs. J Appl Pharm Sci. 2022;12(5):104-19. doi: 10.7324/JAPS.2022.120508.

Azizi Machekposhti S, Mohaved S, Narayan RJ. Inkjet dispensing technologies: recent advances for novel drug discovery. Expert Opin Drug Discov. 2019 Feb;14(2):101-13. doi: 10.1080/17460441.2019.1567489. Epub 2019 Jan 24. PMID: 30676831.

Germini G, Peltonen L. 3D printing of drug nanocrystals for film formulations. Molecules. 2021;26(13):3941. doi: 10.3390/molecules26133941, PMID 34203406.

Pardeike J, Strohmeier DM, Schrodl N, Voura C, Gruber M, Khinast JG, Zimmer A. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011 Nov 25;420(1):93-100. doi: 10.1016/j.ijpharm.2011.08.033. Epub 2011 Aug 22. PMID: 21889582.

Wang Q, Sivakumar K, Mohanasundaram S. Impacts of extrusion processing on food nutritional components. Int J Syst Assur Eng Manag. 2022;13(S1):364-74. doi: 10.1007/s13198-021-01422-2.

Yi HG, Choi YJ, Kang KS, Hong JM, Pati RG, Park MN, Shim IK, Lee CM, Kim SC, Cho DW. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J Control Release. 2016 Sep 28;238:231-41. doi: 10.1016/j.jconrel.2016.06.015. Epub 2016 Jun 8. PMID: 27288878.

Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended-release 3D printed tablets. Eur J Pharm Biopharm. 2015 Oct;96:380-7. doi: 10.1016/j.ejpb.2015.07.027. Epub 2015 Aug 12. PMID: 26277660.

Published

28-07-2022

How to Cite

GHOSH, S., GANGULY, D., BANERJEE, M., & CHAKRABORTY, P. (2022). A REVIEW ON PRESENT AND FUTURE OUTLOOK OF 3D PRINTING IN TRANSDERMAL DRUG DELIVERY SYSTEMS. International Journal of Applied Pharmaceutics, 14, 1–7. https://doi.org/10.22159/ijap.2022.v14ti.15

Issue

Section

Review Article(s)