EXPERIMENTAL DESIGN APPROACH TO FABRICATE AND OPTIMIZE FLOATING TABLETS OF LEVOFLOXACIN FOR HELICOBACTER PYLORI INFECTION

Authors

  • JAGANATHAN K. The Tamilnadu Dr MGR Medical University, Chennai, Tamilnadu, India 600032 https://orcid.org/0000-0002-2145-4525
  • VENKATESWARAMURTHY N. Department of Pharmaceutics, J. K. K. Nattraja College of Pharmacy, Kumarapalayam, Tamilnadu, India 638183
  • NEELAMEGARAJAN R. Department of Pharmaceutics, J. K. K. Nattraja College of Pharmacy, Kumarapalayam, Tamilnadu, India 638183 https://orcid.org/0000-0003-1533-3580
  • KANNAN C. Department of Pharmaceutics, J. K. K. Nattraja College of Pharmacy, Kumarapalayam, Tamilnadu, India 638183 https://orcid.org/0000-0001-8071-6540
  • SAMBATHKUMAR R. Department of Pharmaceutics, J. K. K. Nattraja College of Pharmacy, Kumarapalayam, Tamilnadu, India 638183 https://orcid.org/0000-0003-1454-9582

DOI:

https://doi.org/10.22159/ijap.2022v14i6.45809

Keywords:

Levofloxacin, Floating tablet, Helicobacter pylori, Box–Behnken design, HPMC K4M, HPMC K100M, Xanthan gum

Abstract

Objective: To improve the treatment of H. pylori infection, by achieving the required bactericidal concentrations of antibiotics in the stomach, by delivering the antibiotics to the mucus layer and release the drug at the site of infection for a prolonged period would be significantly more effective than conventional dosage forms.

Methods: The experimental method of the research was designed to prepare Levofloxacin floating by using Hydroxypropyl Methylcellulose (HPMC K4M), Hydroxypropyl Methylcellulose (HPMC K100M) and Xanthan gum by Three-level Box–Behnken design optimization method. The prepared tablets were evaluated for Thickness, Hardness, Friability, Weight variation, Swelling index (SI), Floating lag time (FLT) and Time required to release 90% of the drug from the tablet (T90%).

Results: It was found that the Thickness-3.12±0.11 mm to 3.28±0.10 mm, Hardness-4.52±0.36 kg/cm2 to 4.81±0.24 kg/cm2, Friability-0.81±0.02g to 0.86±0.12g, Weight variation-480±1.90 mg to 523±0.89 mg, Swelling index (SI)-61.9±0.624% to 99.95±0.226%, Floating lag time (FLT)-81.12±0.63 s to 119.7±0.567 s and Time required to release 90% of the drug from the tablet (T90%)-7.0±0.55 h to 10.33±0.289 h. HPMC K100M and Xanthan gum showed good swelling as compared to HPMC K4M. The study revealed that HPMC K100M grade had a significant effect on drug release.

Conclusion: The developed gastro-floating tablets can extend levofloxacin duration in the stomach and produce a prolonged release effect. The prepared levofloxacin floating tablet oral drug delivery system appears to be a promising choice for the efficient eradication of H. pylori

Downloads

Download data is not yet available.

References

Peek RM, Crabtree JE. Helicobacter infection and gastric neoplasia. J Pathol. 2006;208(2):233-48. doi: 10.1002/path.1868, PMID 16362989.

Kuipers EJ, Thijs JC, Festen HP. The prevalence of helicobacter pylori in peptic ulcer disease. Aliment Pharmacol Ther. 1995;9Suppl 2:59-69. PMID 8547530.

Mobley HLT, Mendz GL, Hazell SL, editors. Helicobacter pylori: physiology and Genetics. Washington, (DC): ASM Press; 2001. PMID 21290711.

Take S, Mizuno M, Ishiki K, Kusumoto C, Imada T, Hamada F. Risk of gastric cancer in the second decade of follow-up after helicobacter pylori eradication. J Gastroenterol. 2020;55(3):281-8. doi: 10.1007/s00535-019-01639-w, PMID 31667586.

Chey WD, Leontiadis GI, Howden CW, Moss SF. ACG clinical guideline: treatment of helicobacter pylori infection. Am J Gastroenterol. 2017;112(2):212-39. doi: 10.1038/ajg.2016.563, PMID 28071659.

Malfertheiner P, Megraud F, O’Morain CA, Gisbert JP, Kuipers EJ, Axon AT. Management of helicobacter pylori infection-the maastricht V/Florence consensus report. Gut. 2017;66(1):6-30. doi: 10.1136/gutjnl-2016-312288, PMID 27707777.

El-Shoura SM. Helicobacter pylori: I. Ultrastructural sequences of adherence, attachment, and penetration into the gastric mucosa. Ultrastruct Pathol. 1995;19(4):323-33. doi: 10.3109/01913129509064237, PMID 7571091.

Engstrand L, Graham DY, Scheynius A, Genta RM, El-zaatari F. Is the sanctuary where helicobacter pylori avoids antibacterial treatment intracellular? Am J Clin Pathol. 1997;108(5):504-9. doi: 10.1093/ajcp/108.5.504, PMID 9353088.

Jimenez Castellanos MR, Zia H, Rhodes CT. Design and testing in vitro of a bioadhesive and floating drug delivery system for oral application. International Journal of Pharmaceutics. 1994;105(1):65-70. doi: 10.1016/0378-5173(94)90236-4.

Asnaashari S, Khoei NS, Zarrintan MH, Adibkia K, Javadzadeh Y. Preparation and evaluation of novel metronidazole sustained release and floating matrix tablets. Pharm Dev Technol. 2011;16(4):400-7. doi: 10.3109/10837451003774393, PMID 20429828.

Kanwar N, Kumar R, Sarwal A, Sinha VR. Preparation and evaluation of floating tablets of pregabalin. Drug Dev Ind Pharm. 2016;42(4):654-60. doi: 10.3109/03639045. 2015.1062895, PMID 26146770.

Zaman M, Akhtar F, Baseer A, Hasan SMF, Aman W, Khan A. Formulation development and in vitro evaluation of gastroretentive drug delivery system of loxoprofen sodium: A natural excipients based approach. Pak J Pharm Sci. 2021;34(1):57-63. PMID 34248003.

Numan RS, Abdoon FM. Utility of silver nanoparticles as coloring sensor for determination of levofloxacin in its pure form and pharmaceutical formulations using spectrophotometric technique. AIP Conf Proc. 2020;2213:020103.

Gevariya H, Patel N, Gami S. Formulation and characterization of levofloxacin-loaded biodegradable nanoparticles. Asian J Pharm. 2011;5(2):114-9. doi: 10.4103/0973-8398.84552.

Wan LSC, Heng PWS, Wong LF. Relationship between swelling and drug release in a hydrophilic matrix. Drug Dev Ind Pharm. 1993;19(10):1201-10. doi: 10.3109/03639049309063012.

Talukdar MM, Kinget R. Comparative study on xanthan gum and hydroxypropylmethyl cellulose as matrices for controlled-release drug delivery. II. Drug diffusion in hydrated matrices. International Journal of Pharmaceutics. 1997;151(1):99-107. doi: 10.1016/S0378-5173(97)04896-5.

Maskova E, Kubova K, Raimi Abraham BT, Vllasaliu D, Vohlidalova E, Turanek J. Hypromellose–a traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J Control Release. 2020;324:695-727. doi: 10.1016/j.jconrel.2020.05.045.

Nokhodchi A, Raja S, Patel P, Asare Addo K. The role of oral controlled release matrix tablets in drug delivery systems. BioImpacts. 2012;2(4):175-87. doi: 10.5681/bi.2012.027, PMID 23678458.

Manjunath AM. Guar gum and its pharmaceutical and biomedical applications. Adv Sci Eng Med. 2016;8:1-14.

Siramsetti D, Srinivasa RB. Design and evaluation of zolpidem tartrate matrix tablets for extended release using natural gums and HPMC K100M. J App Pharm Sci. 2018;8(7):72-7. doi: 10.7324/JAPS.2018.8712.

Muhammad AM, Zafar I, Steven HN, Gum G. Xanthan gum, and HPMC can define release mechanisms and sustain release of propranolol hydrochloride. AAPS PharmSciTech. 2011;2(1):77-87.

Jaleh V, Naser T, Fatemeh K. Use of hydrophilic natural gums in formulation of sustained-release matrix tablets of tramadol hydrochloride. AAPS PharmSciTech 2006;7(1):E168-74.

Gangadharappa HV, Rahamath Ulla M, Pramod Kumar TM, Shakeel F. Floating drug delivery system of verapamil hydrochloride using karaya gum and HPMC. Clin Res Regul Aff. 2010;27(1):13-20. doi: 10.3109/10601331003604762.

Ju RTC, Nixon PR, Patel MV. Drug release from hydrophilic matrices. 1. New scaling laws for predicting polymer and drug release based on the polymer disentanglement concentration and the diffusion layer. J Pharm Sci. 1995;84(12):1455-63. doi: 10.1002/jps.2600841213, PMID 8748329.

Sung KC, Nixon PR, Skoug JW, Ju TR, Gao P, Topp EM. Effect of formulation variables on drug and polymer release from HPMC-based matrix tablets. International Journal of Pharmaceutics. 1996;142(1):53-60. doi: 10.1016/0378-5173(96)04644-3.

Kim H, Fassihi R. Application of a binary polymer system in drug release rate modulation. 1. Characterization of release mechanism. J Pharm Sci. 1997;86(3):316-22. doi: 10.1021/js960302s, PMID 9050799.

Kim H, Fassihi R. Application of binary polymer system in drug release rate modulation. 2. Influence of Formulation Variables and Hydrodynamic Conditions on Release Kinetics. J Pharm Sci. 1997;86(3):323-8. doi: 10.1021/js960307p.

Adler J, Jayan A, Melia CD. A method for quantifying differential expansion within hydrating hydrophilic matrixes by tracking embedded fluorescent microspheres. J Pharm Sci. 1999;88(3):371-7. doi: 10.1021/js970376j, PMID 10052997.

Wan LSC, Heng PWS, Wong LF. Relationship between swelling and drug release in a hydrophilic matrix. Drug Dev Ind Pharm. 1993;19(10):1201-10. doi: 10.3109/03639049309063012.

Talukdar MM, Michoel A, Rombaut P, Kinget R. Comparative study on xanthan gum and hydroxypropylmethyl cellulose as matrices for controlled-release drug delivery I. Compaction and in vitro drug release behaviour. International Journal of Pharmaceutics. 1996;129(1-2):233-41. doi: 10.1016/0378-5173(95)04355-1.

Lin YH, Liang HF, Chung CK, Chen MC, Sung HW. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials. 2005;26(14):2105-13. doi: 10.1016/j.biomaterials.2004.06.011, PMID 15576185.

Fyfe CA, Blazek Welsh AI. Quantitative NMR imaging study of the mechanism of drug release from swelling hydroxypropylmethylcellulose tablets. J Control Release. 2000;68(3):313-33. doi: 10.1016/s0168-3659(00)00245-5, PMID 10974386.

Nellore RV, Rekhi GS, Hussain AS, Tillman LG, Augsburger LL. Development of metoprolol tartrate extended-release matrix tablet formulations for regulatory policy consideration. J Control Release. 1998;50(1-3):247-56. doi: 10.1016/s0168-3659(97)00141-7, PMID 9685891.

Higuchi T. Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(12):1145-9. doi: 10.1002/jps.2600521210, PMID 14088963.

Korsmeyer RW, Gurny R, Doelker E, Buri PNA, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics. 1983;15(1):25-35. doi: 10.1016/0378-5173(83)90064-9.

Rao KR, Lakshmi KR. Design, development and evaluation of clopidogrel bisulfate floating tablets. Int J Pharm Investig. 2014;4(1):19-26. doi: 10.4103/2230-973X.127736, PMID 24678458.

Patel A, Modasiya M, Shah D, Patel V. Development and in vivo floating behavior of verapamil HCl intragastric floating tablets. AAPS PharmSciTech. 2009;10(1):310-5. doi: 10.1208/s12249-009-9210-9, PMID 19296224.

Loh ZC, Elkordy AA. Formulation and evaluation of different floating tablets containing metronidazole to target stomach. Curr Drug Deliv. 2015;12(4):425-43. doi: 10.2174/ 156720181204150729125655, PMID 25924732.

Published

07-11-2022

How to Cite

K., J., N., V., R., N., C., K., & R., S. (2022). EXPERIMENTAL DESIGN APPROACH TO FABRICATE AND OPTIMIZE FLOATING TABLETS OF LEVOFLOXACIN FOR HELICOBACTER PYLORI INFECTION. International Journal of Applied Pharmaceutics, 14(6), 100–113. https://doi.org/10.22159/ijap.2022v14i6.45809

Issue

Section

Original Article(s)

Most read articles by the same author(s)