DESIGN, PREPARATION, AND IN SILICO STUDY OF NOVEL CURCUMIN-BIPHENYL CARBONITRILE CONJUGATE AS NOVEL ANTICANCER DRUG MOLECULES

Authors

  • GEETA KRISHNAMURTHY Department of Chemistry, FMPS, M. S. Ramaiah University of Applied Sciences, Bangalore, India
  • LAIRIKYENGBAM DEEPTI ROY Department of Chemistry, FMPS, M. S. Ramaiah University of Applied Sciences, Bangalore, India
  • JYOTSNA KUMAR Department of Chemistry, FMPS, M. S. Ramaiah University of Applied Sciences, Bangalore, India https://orcid.org/0000-0002-7138-4190
  • N MANIKANDA PRABU Department of Chemistry, FMPS, M. S. Ramaiah University of Applied Sciences, Bangalore, India
  • POOJA GOUR Department of Chemistry, FMPS, M. S. Ramaiah University of Applied Sciences, Bangalore, India
  • SHIVANJALI ESTHER ARLAND Department of Chemistry, FMPS, M. S. Ramaiah University of Applied Sciences, Bangalore, India

DOI:

https://doi.org/10.22159/ijap.2023v15i4.45811

Keywords:

Curcumin, Biphenyl-carbonitrile, KRAS protein, MTT, PANC1

Abstract

Objective: To design and synthesize the novel curcumin derivatives of curcumin-biphenyl carbonitrile conjugate to study their ADMET, drug-like behaviour and cytotoxicity on PANC1 cell lines.

Methods: Binding affinity of designed novel Curcumin analogues were assessed by molecular docking against the target protein (KRAS). Structures of lately synthesized compounds were characterized by spectral analysis. ADMET (absorption, distribution, metabolism, excretion, and toxicity) drug-likenesses behaviour prediction of synthesized curcumin analogues was done by computational analysis. The stability of the synthesized curcumin analogues was carried out by force degradation method as per ICH guidelines. In vitro cytotoxic assessment of these novel compounds on PANC 1 cancer cell lines was assessed by MTT assay.

Results: Three hit molecules were identified, which had the best binding affinity against the target protein KRAS having a docking score of -7.21 for CD2,-7.05 for CD3, and-6.80 for CD1. Most of the Pharmacokinetic (ADME) parameters are found to be quite agreeable and in the satisfactory range. 1H-NMR, FTIR and Mass spectrographic methods confirmed the structures. All three synthesized novel curcumin analogues were stable for a period of three months. Results of anti-proliferative activities indicated their cogent anticancer activity against PANC 1 cell line (IC50 = 67.51 μM@CD1, 45.27 μM @CD2 and 168.60 µg/ml @CD3).

Conclusion: This study demonstrated that curcumin-biphenylcarbonitrile conjugate could be used as a plausible pharmacophore for targeting KRAS protein and will be supportive to explore the new series of cogent curcumin derivatives as anticancer agents.

Downloads

Download data is not yet available.

References

American Society of Clinical Oncology. The state of cancer care in America, 2014: a report by the American Society of Clinical Oncology. J Oncol Pract. 2014 Mar;10(2):119-42. doi: 10.1200/JOP.2014.001386, PMID 24618075.

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015 Mar;65(2):87-108. doi: 10.3322/caac.21262, PMID 25651787.

Erratum to “Cancer statistics, 2021”. CA Cancer J ClinCA Cancer J Clin. 2021;71(4):359. doi: 10.3322/caac.21669. PMID 34232515.

Taipale J, Beachy PA. The hedgehog and wnt signalling pathways in cancer. Nature. 2001 May 17;411(6835):349-54. doi: 10.1038/35077219, PMID 11357142.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013, PMID 21376230.

Rhett JM, Khan I, O’Bryan JP. Biology, pathology, and therapeutic targeting of RAS. Adv Cancer Res. 2020;148:69-146. doi: 10.1016/bs.acr.2020.05.002. PMID 32723567.

Eser S, Schnieke A, Schneider G, Saur D. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 2014 Aug 26;111(5):817-22. doi: 10.1038/bjc.2014.215, PMID 24755884.

Lu H, Marti J. Long-lasting salt bridges provide the anchoring mechanism of oncogenic Kirsten Rat sarcoma proteins at cell membranes. J Phys Chem Lett. 2020 Nov 19;11(22):9938-45. doi: 10.1021/acs.jpclett.0c02809. PMID 33170712.

Dracham CB, Shankar A, Madan R. Radiation induced secondary malignancies: a review article. Radiat Oncol J. 2018 Jun;36(2):85-94. doi: 10.3857/roj.2018.00290, PMID 29983028.

De AK, Bera T. Analytical method development, validation and stability studies by RP-HPLC method for simultaneous estimation of andrographolide and curcumin in co-encapsulated nanostructured lipid carrier drug delivery system. Int J App Pharm. 2021;13(5):73-86. doi: 10.22159/ijap.2021v13i5.42181.

Krishnamurthy G, Roy D, Kumar J. Curcumin, a natural golden drug and its anticancer aspects from synthesis to delivery: a review. Int J App Pharm. 2020;12(5):70-84. doi: 10.22159/ijap.2020v12i5.38586.

Heydari P, Zargar Kharazi A, Asgary S, Parham S. Comparing the wound healing effect of a controlled release wound dressing containing curcumin/ciprofloxacin and simvastatin/ciprofloxacin in a rat model: A preclinical study. J Biomed Mater Res A. 2022 Feb;110(2):341-52. doi: 10.1002/jbm.a.37292. PMID 34378857.

Kabir MT, Rahman MH, Akter R, Behl T, Kaushik D, Mittal V. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules. 2021 Mar 7;11(3):392. doi: 10.3390/biom11030392, PMID 33800000.

Pandya N, Khan E, Jain N, Satham L, Singh R, Makde RD. Curcumin analogs exhibit anti-cancer activity by selectively targeting G-quadruplex forming c-myc promoter sequence. Biochimie. 2021 Jan;180:205-21. doi: 10.1016/j.biochi.2020.11.006. PMID 33188859.

Borgio JF, Bency BJ, Thorat PK, Lonkar AD. Gynandropsis pentaphylla DC extracts on the production of microbial proteins. Am J Drug Discov Dev. 2011;1(2):129-36. doi: 10.3923/ajdd.2011.129.136.

Krishnamurthy G, Deepti Roy L, Kumar J, Gour P, Arland SE, Prabu M. Study of in silico admet, molecular docking, and stability potential of synthesized novel tetrazole bearing curcumin derivatives and evaluation of their anticancer potential on panc-1 cell lines. Rasayan J Chem. 2023;16(1):335-54. doi: 10.31788/RJC.2023.1618114.

Mohamed SF, Flefel EM, Amr G, Abd El-Shafy DN. Anti-HSV-1 activity and mechanism of action of some new synthesized substituted pyrimidine, thiopyrimidine and thiazolopyrimidine derivatives. Eur J Med Chem. 2010 Apr;45(4):1494-501. doi: 10.1016/j.ejmech.2009.12.057, PMID 20110135.

Roy LD. Novel resveratrol analogues with aromatic hetero moieties: designing, one-pot synthesis and in vitro biological evaluation. Farmacia. 2023;71(1):130-43. doi: 10.31925/farmacia.2023.1.16.

Priyanka R, Lairikyengbam Roy VK, Manikanda P, Geeta K, Pooja G, Shivanjali A. Synthesis, characterization, and biological activity of novel azole piperazine congeners. J Appl Pharm Sci. 2023 Mar;13(04):53-69.

Rida SM, Ashour FA, El-Hawash SA, ElSemary MM, Badr MH, Shalaby MA. Synthesis of some novel benzoxazole derivatives as anticancer, anti-HIV-1 and antimicrobial agents. Eur J Med Chem. 2005 Sep;40(9):949-59. doi: 10.1016/j.ejmech.2005.03.023, PMID 16040162.

Seth K, Garg SK, Kumar R, Purohit P, Meena VS, Goyal R. 2-(2-arylphenyl)benzoxazole as a novel anti-inflammatory scaffold: synthesis and biological evaluation. ACS Med Chem Lett. 2014 Feb 17;5(5):512-6. doi: 10.1021/ml400500e, PMID 24900871.

Angajala G, Subashini R. Synthesis, molecular modeling, and pharmacological evaluation of new 2-substituted benzoxazole derivatives as potent anti-inflammatory agents. Struct Chem. 2020;31(1):263-73. doi: 10.1007/s11224-019-01374-1.

Anusha P, Rao JV, Mohan GK. A review on diverse biological activities of benzoxazole molecule. World J Pharm Pharm Sci. 2017 May 18;6(7):1779-94.

Singh S, Veeraswamy G, Bhattarai D, Goo JI, Lee K, Choi Y. Recent advances in the development of pharmacologically active compounds that contain a benzoxazole scaffold. Asian J Org Chem. 2015 Dec;4(12):1338-61. doi: 10.1002/ajoc.201500235.

Correction to Lancet Respir Med 2020. Lancet Respir Med. 2020 Apr;8(4):e26:30079-5. doi: 10.1016/S2213-2600(20)30103-X.

Cram DJ. The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew Chem Int Ed Engl. 1988 Aug;27(8):1009-20. doi: 10.1002/anie.198810093.

Kelloff GJ, Lubet RA, Lieberman R, Eisenhauer K, Steele VE, Crowell JA. Aromatase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev. 1998 Jan;7(1):65-78. PMID 9456245.

Singh H, Walker AJ, Amiri Kordestani L, Cheng J, Tang S, Balcazar P. US food and drug administration approval: neratinib for the extended adjuvant treatment of early-stage HER2-positive breast cancer. Clin Cancer Res. 2018 Aug 1;24(15):3486-91. doi: 10.1158/1078-0432.CCR-17-3628.

Sohn SH, Sul HJ, Kim B, Kim HS, Kim BJ, Lim H. RNF43 and PWWP2B inhibit cancer cell proliferation and are predictive or prognostic biomarker for FDA-approved drugs in patients with advanced gastric cancer. J Cancer. 2021 Jun 1;12(15):4616-25. doi: 10.7150/jca.56014, PMID 34149925.

Wellington K, Keam SJ. Spotlight on bicalutamide 150mg in the treatment of locally advanced prostate cancer. Drugs Aging. 2007;24(2):169-71. doi: 10.2165/00002512-200724020-00008, PMID 17313204.

Meti GY, Kamble RR, Biradar DB, Margankop SBS. Synthesis of biphenyl derivatives as ACE and α-amylase inhibitors. Med Chem Res. 2013 Mar;22(12):5868-77. doi: 10.1007/s00044-013-0574-8.

Xiao L, Wang Y, Yang J, Yuan F, Jiang C, Hou B. Determination and correlation of solubility of 4′-bromomethyl-2-cyanobiphenyl in acetone+(ethanol, n-propanol, n-butanol) mixtures. The Journal of Chemical Thermodynamics. 2016;102:199-210. doi: 10.1016/j.jct.2016.06.032.

Hernandez Olmos V, Heering J, Planz V, Liu T, Kaps A, Rajkumar R. First structure-activity relationship study of potent BLT2 agonists as potential wound-healing promoters. J Med Chem. 2020 Oct 22;63(20):11548-72. doi: 10.1021/acs.jmedchem.0c00588. PMID 32946232.

Baburajeev CP, Mohan CD, Patil GS, Rangappa S, Pandey V, Sebastian A. Nano-cuprous oxide catalyzed one-pot synthesis of a carbazole-based STAT3 inhibitor: A facile approach via intramolecular C–N bond formation reactions. RSC Adv. 2016 Mar;6(43):36775-85. doi: 10.1039/C6RA01906D.

Gani MA, Nurhan AD, Maulana S, Siswodihardjo S, Shinta DW, Khotib J. Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2. J Adv Pharm Technol Res. 2021 Apr-Jun;12(2):120-6. doi: 10.4103/japtr.JAPTR_88_21. PMID 34159141.

Kalirajan R, Sankar S, Jubie S, Gowramma B. Molecular docking studies and in-silico ADMET screening of some novel oxazine substituted 9-anilinoacridines as topoisomerase II inhibitors. Ind J Pharm Educ Res. 2017 Jan;51(1):110-5. doi: 10.5530/ijper.51.1.15.

Ganaie AA, Siddique HR, Sheikh IA, Parray A, Wang L, Panyam J. A novel terpenoid class for prevention and treatment of KRAS-driven cancers: comprehensive analysis using in situ, in vitro, and in vivo model systems. Mol Carcinog. 2020 Aug;59(8):886-96. doi: 10.1002/mc.23200, PMID 32291806.

Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed Engl. 2012 Jun 18;51(25):6140-3. doi: 10.1002/anie.201201358, PMID 22566140.

Lanka G, Bathula R, Dasari M, Nakkala S, Bhargavi M, Somadi G. Structure-based identification of potential novel inhibitors targeting FAM3B (PANDER) causing type 2 diabetes mellitus through virtual screening. J Recept Signal Transduct Res. 2019 Jun;39(3):253-63. doi: 10.1080/10799893.2019.1660897, PMID 31517548.

Ibrahim RS, El-Banna AA. Network pharmacology-based analysis for unraveling potential cancer-related molecular targets of Egyptian propolis phytoconstituents accompanied with molecular docking and in vitro studies. RSC Adv. 2021 Mar 22;11(19):11610-26. doi: 10.1039/d1ra01390d, PMID 35423607.

Das SK, Mahanta S, Tanti B, Tag H, Hui PK. Identification of phytocompounds from Houttuynia cordata Thunb. as potential inhibitors for SARS-CoV-2 replication proteins through GC-MS/lC-MS characterization, molecular docking and molecular dynamics simulation. Mol Divers. 2022 Feb;26(1):365-88. doi: 10.1007/s11030-021-10226-2, PMID 33961167.

Ross KC, Andrews AJ, Marion CD, Yen TJ, Bhattacharjee V. Identification of the serine biosynthesis pathway as a critical component of BRAF inhibitor resistance of melanoma, pancreatic, and non-small cell lung cancer cells. Mol Cancer Ther. 2017 Aug;16(8):1596-609. doi: 10.1158/1535-7163.MCT-16-0798. PMID 28500236.

Bhat MA, Tüzün B, Alsaif NA, Ali Khan A, Naglah AM. Synthesis, characterization, molecular modeling against EGFR target and ADME/T analysis of novel purine derivatives of sulfonamides. Journal of Molecular Structure. 2022;1257. doi: 10.1016/j.molstruc.2022.132600.

Umar AB, Uzairu A, Shallangwa GA, Uba S. Design of potential anti-melanoma agents against SK-MEL-5 cell line using QSAR modeling and molecular docking methods. SN Appl Sci. 2020 Apr;2(5):1-18. doi: 10.1007/s42452-020-2620-8.

Attique SA, Hassan M, Usman M, Atif RM, Mahboob S, Al-Ghanim KA. A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension. Int J Environ Res Public Health. 2019 Mar 14;16(6):923. doi: 10.3390/ijerph16060923, PMID 30875817.

Abdullahi M, Adeniji SE. In-silico molecular docking and ADME/Pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents. Chemistry Africa. 2020 Jul;3(4):989-1000. doi: 10.1007/s42250-020-00162-3.

Huang C, Lu HF, Chen YH, Chen JC, Chou WH, Huang HC. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and-independent apoptosis via Smad or Akt signaling pathways in HOS cells. BMC Complement Med Ther. 2020;20(1):68. doi: 10.1186/s12906-020-2857-1. PMID 32126993.

Peret Almeida L, Cherubino APF, Alves RJ, Dufosse L, Gloria MBA. Separation and determination of the physico-chemical characteristics of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Research International. 2005 Oct-Nov;38(8-9):1039-44. doi: 10.1016/j.foodres.2005.02.021.

Lu AZ, Hu TQ, Osmond DA, Patrick BO, James BR. Tetrazole ethers from lignin model phenols: synthesis, crystal structures, and photostability. Can J Chem. 2001 Aug;79(8):1201-6. doi: 10.1139/v01-110.

Mobina L, Mehfuza M, Seema P, Ahmed A, Khan JG. Analytical method development and validation and forced degradation stability-indicating studies of Favipiravir by RP-HPLC and UV in bulk and pharmaceutical dosage form. Nazifa Sabir Ali S J Pharm Res Int. 2021 Nov;33(48B):254-71.

Kavitha CV, Nambiar M, Ananda Kumar CS, Choudhary B, Muniyappa K, Rangappa KS. Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells. Biochem Pharmacol. 2009 Feb 1;77(3):348-63. doi: 10.1016/j.bcp.2008.10.018, PMID 19014909.

Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials. 1993 Apr;14(5):359-64. doi: 10.1016/0142-9612(93)90055-7, PMID 8507779.

Lodish H, Berk A, Zipursky SL. Proto-oncogenes and tumor-suppressor genes. Mole cell bio. 4th ed. New York; 2000.

Donald JE, Kulp DW, DeGrado WF. Salt bridges: geometrically specific, designable interactions. Proteins. 2011 Mar;79(3):898-915. doi: 10.1002/prot.22927, PMID 21287621.

Infield DT, Rasouli A, Galles GD, Chipot C, Tajkhorshid E, Ahern CA. Cation-π interactions and their functional roles in membrane proteins. J Mol Biol. 2021 Aug 20;433(17):167035. doi: 10.1016/j.jmb.2021.167035. PMID 33957146.

Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C. ADMET lab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021 Jul 2;49(W1):W5-W14. doi: 10.1093/nar/gkab255, PMID 33893803.

Daina A, Michielin O, Zoete V. Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar 3;7:42717. doi: 10.1038/srep42717, PMID 28256516.

Isyaku Y, Uzairu A, Uba S. Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl-and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon Heliyon. 2020;6(4):e03724. doi: 10.1016/j.heliyon.2020.e03724. PMID 32322718.

Bojarska J, Remko M, Breza M, Madura ID, Kaczmarek K, Zabrocki J. A supramolecular approach to structure-based design with a focus on synthons hierarchy in ornithine-derived ligands: review, synthesis, experimental and in silico studies. Molecules. 2020 Mar 3;25(5):1135. doi: 10.3390/molecules25051135, PMID 32138329.

Malani MH, Dholakiya BZ, Ibrahim AS, Badria FA. Synthesis and selective cytotoxicity of novel biphenyl-based tetrazole derivatives. Med Chem Res. 2014 May;23(10):4427-35. doi: 10.1007/s00044-014-1010-4.

Karabacak M, Yilan E. Molecular structure, spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR, UV), polarizability and first-order hyperpolarizability, HOMO and LUMO analysis of 4′-methylbiphenyl-2-carbonitrile. Spectrochim Acta A Mol Biomol Spectrosc. 2012 Feb 15;87:273-85. doi: 10.1016/j.saa.2011.11.051, PMID 22185952.

Alici O, karatas I. Novel oximes including 4′-(n-aminoalkyloxy) biphenyl-4-carbonitrile: synthesis and characterization. J Selc Uni Nat Appl Sci. 2014 Oct;3(3):81-91.

Lestari ML, Indrayanto G. Curcumin. Profiles Drug Subst Excip Relat Methodol. 2014;39:113-204. doi: 10.1016/B978-0-12-800173-8.00003-9.

Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials. 1993 Apr;14(5):359-64. doi: 10.1016/0142-9612(93)90055-7, PMID 8507779.

Bahuguna A, Khan I, Bajpai VK, Kang SC. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J Pharmacol. 2017 Apr;12(2):115-8. doi: 10.3329/bjp.v12i2.30892.

Published

07-07-2023

How to Cite

KRISHNAMURTHY, G., DEEPTI ROY, L., KUMAR, J., PRABU, N. M., GOUR, P., & ARLAND, S. E. (2023). DESIGN, PREPARATION, AND IN SILICO STUDY OF NOVEL CURCUMIN-BIPHENYL CARBONITRILE CONJUGATE AS NOVEL ANTICANCER DRUG MOLECULES. International Journal of Applied Pharmaceutics, 15(4), 143–159. https://doi.org/10.22159/ijap.2023v15i4.45811

Issue

Section

Original Article(s)