A PHYSIOCHEMICAL STUDY ON DRUG DELIVERY OF METFORMIN HCL-LOADED CS-PLGA NANOPARTICLES

Authors

  • YUTTANA SUDJAROEN Department of Applied Science, Faculty of Science and Technology, Suan Sunandha, Rajabhat University, Bangkok 10300, Thailand
  • KANITTADA THONGKAO Department of Applied Science, Faculty of Science and Technology, Suan Sunandha, Rajabhat University, Bangkok 10300, Thailand
  • PIMPORN THONGMUANG Department of Aesthetic Health Science, College of Allied Health Sciences, Suan Sunandha, Rajabhat University, Samut Songkhram 75000, Thailand

DOI:

https://doi.org/10.22159/ijap.2023v15i1.45842

Keywords:

Nanoparticles, Anti-diabetic agent, Type 2 diabetes, Drug delivery system, Bioavailability

Abstract

Objective: The current research was based on developing CS-PLGA nanoparticles (NPs) drug delivery system (DDS) for improving the bio-availability of metformin HCl, an anti-diabetic drug.

Methods: Nanoprecipitation method was utilized to prepare the metformin HCl-loaded CS-PLGA NPs DDS. The metformin HCl-loaded NPs were validated using an analytical method and characterization of NPs was also done. These polymers release the drug in a controlled manner.

Results: The correlation coefficient (R2) value for the metformin HCl calibration curve was 0.9971 in phosphate buffer pH 6.8 at a concentration range of 0-12 μg/ml. Metformin HCl-loaded NPs release the drug at 144 h, approximately 90%. DSC tests were carried out for 50 mg and 75 mg of MET HCl incorporated NPs and FT-IR for 50 mg of MET HCl incorporated NPs, it was clear from the FT-IR and DSC spectra that there were no interactions between the metformin HCl and the polymer.

Conclusion: It was proven that metformin HCl-loaded NPs act as a prominent DDS by exhibiting extensive drug release and an increase in its bioavailability.

Downloads

Download data is not yet available.

References

Shivashankar M, Mani D. A brief overview of diabetes. Int J Pharm Pharm Sci. 2011;3(4):22-7.

Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017 Sep;60(9):1577-85. doi: 10.1007/s00125-017-4342-z, PMID 28776086.

Viollet B, Guigas B, Sanz Garcia NS, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122(6):253-70. doi: 10.1042/CS20110386, PMID 22117616.

Spritzer PM, Motta AB, Sir-Petermann T, Diamanti Kandarakis E. Novel strategies in the management of polycystic ovary syndrome. Minerva Endocrinol. 2015;40(3):195-212. PMID 25781065.

Pernicova I, Korbonits M. Metformin-mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143-56. doi: 10.1038/nrendo. 2013.256, PMID 24393785.

N MP, S SC, SV, C PA, Ras N. Formulation and evaluation of simvastatin gastroretentive drug delivery system. Int J App Pharm 2017;9(3). doi: 10.22159/ijap.2017v9i3.18763.

Boldhane SP, Kuchekar BS. Gastroretentive drug delivery of metformin hydrochloride: formulation and in vitro evaluation using 3(2) full factorial design. Curr Drug Deliv. 2009;6(5):477-85. doi: 10.2174/156720109789941641, PMID 19863493.

Powar PV. Development status in the meadow of nanostructure magnetic drug delivery system and its promising applications. Int J Pharm Pharm Sci. 2017;9(12):10-7. doi: 10.22159/ijpps.2017v9i12.21544.

Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172(12):1487-90. doi: 10.1164/rccm.200504-613PP, PMID 16151040.

Gundogdu N, Cetin M. Chitosan-poly (lactide-co-glycolide) (CS-PLGA) nanoparticles containing metformin HCl: preparation and in vitro evaluation. Pak J Pharm Sci. 2014;27(6):1923-9. PMID 25362616.

Pereira ASBF, de Souza Lima ML, da Silva-Junior AA, Dos Santos Silva E, de Araujo Junior RF, Martins AA. In vitro-in vivo availability of metformin hydrochloride-PLGA nanoparticles in diabetic rats in a periodontal disease experimental model. Pharm Biol. 2021;59(1):1576-84. doi: 10.1080/13880209.2021.2002369. PMID 34808068.

Wang Q, Jamal S, Detamore MS, Berkland C. PLGA‐chitosan/PLGA‐alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. J Biomed Mater Res A. 2011;96(3):520-7. doi: 10.1002/jbm.a.33000. PMID 21254383.

Mohammadzadeh S, Shahsavari S, Karimian F, Hashemi SJ, Akbari Javar H, Mollabagher H. Development and characterization of optimized sustained release voriconazole-loaded chitosan nanoparticles for ocular delivery. J Part Sci Technol. 2021;7(1):1-10.

Branca C, D’Angelo G, Crupi C, Khouzami K, Rifici S, Ruello G. Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: a FTIR-ATR study on chitosan and chitosan/clay films. Polymer. 2016;99:614-22. doi: 10.1016/j.polymer.2016.07.086.

Ma FK, Li J, Kong M, Liu Y, An Y, Chen XG. Preparation and hydrolytic erosion of differently structured PLGA nanoparticles with chitosan modification. Int J Biol Macromol. 2013;54:174-9. doi: 10.1016/j.ijbiomac.2012.12.019, PMID 23262384.

Published

07-01-2023

How to Cite

SUDJAROEN, Y., THONGKAO, K., & THONGMUANG, P. (2023). A PHYSIOCHEMICAL STUDY ON DRUG DELIVERY OF METFORMIN HCL-LOADED CS-PLGA NANOPARTICLES. International Journal of Applied Pharmaceutics, 15(1), 66–71. https://doi.org/10.22159/ijap.2023v15i1.45842

Issue

Section

Original Article(s)