OPTIMIZING LEVETIRACETAM SURFACTANT-BASED NANOVESICLES (LEV-NVS) GEL FOR TREATING EPILEPSY USING EXPERIMENTAL DESIGN
DOI:
https://doi.org/10.22159/ijap.2023v15i2.46450Keywords:
Intranasal, Levetiracetam, Nanovesicles, Brain-targeted, Antiepileptic, Solvent evaporation techniqueAbstract
Objective: To develop and estimate the intranasal delivery of Levetiracetam surfactant-based nanovesicles (Lev-Nvs) as a brain-targeted antiepileptic delivery system prepared via solvent evaporation technique.
Methods: Optimized formulation F (OPT) chosen by the Design-Expert® program gave the highest entrapment efficiency (EE%) was incorporated into the gel. An experimental design was adopted utilizing various (span 65) surfactants and different cholesterol ratios. The (Lev-Nvs) nanovesicles were formulated by solvent evaporation technique and evaluated for in vitro characterization parameters such as zeta sizer, Transmission Electron Microscopy (TEM), zeta potential. The nasal gel was evaluated for drug-excipient interactions utilizing Fourier Transform Infrared Spectroscopy (FTIR) and subjected to in vitro and in vivo release studies.
Results: The results indicated that the entrapment efficiency (EE%) of Levetiracetam surfactant-based nano-vesicles (Lev-Nvs) could be modulated by the alterations in surfactant and cholesterol concentrations. Optimized formulation F (OPT) showed an entrapment efficiency of (87.9±1.06 %), (206.7±20.43 nm) particle size, (-34.1) zeta potential and (0.979) PDI. The nanovesicle nasal gels of the F(OPT) were prepared using Carbopol 940 at different concentrations. G 0.375 formulation showed the best in vitro drug release (87.36%) after 12 h. Finally, the comparative in vivo pharmaco-kinetics release studies on rats revealed considerable, sustained release of the nanovesicle nasal gel and higher relative bioavailability than an equivalent dose of oral solution (293.85%).
Conclusion: Our study proves the improved efficacy of Levetiracetam as a surfactant-based nanovesicle intranasal gel in the brain targeting antiepileptic medication.
Downloads
References
Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med. 2015;5(6):a022426. doi: 10.1101/cshperspect.a022426, PMID 26033084.
Goldenberg MM. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. P T. 2010;35(7):392-415. PMID 20689626.
Minardi C, Minacapelli R, Valastro P, Vasile F, Pitino S, Pavone P. Epilepsy in children: from diagnosis to treatment with focus on emergency. J Clin Med. 2019;8(1):39. doi: 10.3390/jcm8010039, PMID 30609770.
Howard P, Remi J, Remi C, Charlesworth S, Whalley H, Bhatia R. Levetiracetam. J Pain Symptom Manage. 2018;56(4):645-9. doi: 10.1016/j.jpainsymman.2018.07.012, PMID 30036676.
Brittain HG. Profiles drug subst excipients relat methodol; 2020.
Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1-18. doi: 10.1016/s0928-0987(00)00087-7, PMID 10913748.
El-Nabarawy NA, Teaima MH, Helal DA. Assessment of spanlastic vesicles of zolmitriptan for treating migraine in rats. Drug Des Devel Ther. 2019;13:3929-37. doi: 10.2147/DDDT.S220473, PMID 31819367.
Djupesland PG, Messina JC, Mahmoud RA. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv. 2014;5(6):709-33. doi: 10.4155/tde.14.41, PMID 25090283.
Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. Drug Deliv Transl Res. 2013;3(1):42-62. doi: 10.1007/s13346-012-0108-9, PMID 23316447.
Illum L. Nasal drug delivery-recent developments and future prospects. J Control Release. 2012;161(2):254-63. doi: 10.1016/j.jconrel.2012.01.024, PMID 22300620.
Mistry A, Stolnik S, Illum L. Nose-to-brain delivery: investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol Pharm. 2015;12(8):2755-66. doi: 10.1021/acs.molpharmaceut.5b00088, PMID 25997083.
Teaima MH, Yasser M, El-Nabarawi MA, Helal DA. Proniosomal telmisartan tablets: formulation, in vitro evaluation and in vivo comparative pharmacokinetic study in rabbits. Drug Des Devel Ther. 2020;14:1319-31. doi: 10.2147/DDDT.S245013, PMID 32280201.
Jafarieh OS, Ali M, Baboota S, Sahni J, Kumari B. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm 2015;41(10):1674-81.
Abdel Rashid RS, Helal DA, Omar MM, El Sisi AM. Nanogel loaded with surfactant-based nanovesicles for enhanced ocular delivery of acetazolamide. Int J Nanomedicine. 2019;14:2973-83. doi: 10.2147/IJN.S201891, PMID 31118616.
Abdelmonem R, El Nabarawi M, Attia A. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats. Drug Deliv. 2018;25(1):70-7. doi: 10.1080/10717544.2017.1413447, PMID 29228824.
Teaima MH, Abdelhalim SA, El-Nabarawi MA, Attia DA, Helal DA. Non-ionic surfactant based vesicular drug delivery system for topical delivery of caffeine for treatment of cellulite: design, formulation, characterization, histological anti-cellulite activity, and pharmacokinetic evaluation. Drug Dev Ind Pharm. 2018;44(1):158-71. doi: 10.1080/03639045.2017.1386206, PMID 28956468.
Ghasemiyeh P, Mohammadi Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288-303. doi: 10.4103/1735-5362.235156, PMID 30065762.
Amoabediny G, Haghiralsadat F, Naderinezhad S, Helder MN, Akhoundi Kharanaghi E, Mohammadnejad Arough J. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2018;67(6):383-400. doi: 10.1080/ 00914037.2017.1332623.
Qumbar M, Ameeduzzafar, Imam SS, Ali J, Ahmad J, Ali A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In vitro characterization and in vivo activity. Biomed Pharmacother. 2017;93:255-66. doi: 10.1016/j.biopha.2017.06.043, PMID 28738502.
Teaima MH, El Mohamady AM, El-Nabarawi MA, Mohamed AI. Formulation and evaluation of niosomal vesicles containing ondansetron HCL for trans-mucosal nasal drug delivery. Drug Dev Ind Pharm. 2020;46(5):751-61. doi: 10.1080/03639045.2020.1753061, PMID 32250181.
Abdelmonem R, Elhabal SF, Abdelmalak NS, El-Nabarawi MA, Teaima MH. Formulation and characterization of acetazolamide/carvedilol niosomal gel for glaucoma treatment: in vitro, and in vivo study. Pharmaceutics. 2021;13(2):221. doi: 10.3390/pharmaceutics13020221, PMID 33562785.
Gu F, Ma W, Meng G, Wu C, Wang Y. Preparation and in vivo evaluation of a gel-based nasal delivery system for risperidone. Acta Pharm. 2016;66(4):555-62. doi: 10.1515/acph-2016-0047, PMID 27749254.
Ruckmani K, Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech. 2010;11(3):1119-27. doi: 10.1208/s12249-010-9480-2, PMID 20635228.
Hao Y, Zhao F, Li N, Yang Y, Li K. Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm. 2002;244(1-2):73-80. doi: 10.1016/s0378-5173(02)00301-0, PMID 12204566.
Abdelbary G, El-Gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech. 2008;9(3):740-7. doi: 10.1208/s12249-008-9105-1, PMID 18563578.
Ruwizhi N, Aderibigbe BA. The efficacy of cholesterol-based carriers in drug delivery. Molecules. 2020;25(18):4330. doi: 10.3390/molecules25184330, PMID 32971733.
Mathure D, Madan JR, Gujar KN, Tupsamundre A, Ranpise HA, Dua K. Formulation and evaluation of niosomal in situ nasal gel of a serotonin receptor agonist, buspirone hydrochloride for the brain delivery via intranasal route. Pharm Nanotechnol. 2018;6(1):69-78. doi: 10.2174/2211738506666180130105919, PMID 29380709.
Abdelkader H, Farghaly U, Moharram H. Effects of surfactant type and cholesterol level on niosomes physical properties and in vivo ocular performance using timolol maleate as a model drug. J Pharm Investig. 2014;44(5):329-37. doi: 10.1007/s40005-014-0121-8.
Nie S, Hsiao WL, Pan W, Yang Z. Thermoreversible pluronic F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies. Int J Nanomedicine. 2011;6:151-66. doi: 10.2147/IJN.S15057, PMID 21499415.
Singh RK, Deora AS. 5-Fluorouracil impregnated liposomal-in situ gel (thermo-sensitive) for oral cancer: design, characterization, in vitro/ex vivo evaluation. Int J App Pharm. 2022;14(4):126-37. doi: 10.22159/ijap.2022v14i4.44195.
Saraswathi T, Mothilal M. Development of rivastigmine loaded self assembled nanostructures of nonionic surfactants for brain delivery. Int J Appl Pharm. 2021:205-15.
Parvez Baig R, Wais M. Formulation and development of proniosomal gel for topical delivery of amphotericin B. Int J Pharm Pharm Sci. 2022:37-49. doi: 10.22159/ijpps.2022v14i1.43237.
Akbari J, Saeedi M, Enayatifard R, Morteza Semnani K, Hassan Hashemi SMH, Babaei A. Curcumin niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J Drug Deliv Sci Technol. 2020;60:102035. doi: 10.1016/j.jddst.2020.102035.
Mothilal M, Damodharan N, Jaison D. Screening and optimization of valacyclovir niosomes by the design of experiments. SP ST. Int J Appl Pharm. 2018:79-85.
Tas C, Ozkan CK, Savaser A, Ozkan Y, Tasdemir U, Altunay H. Nasal absorption of metoclopramide from different carbopol 981 based formulations: in vitro, ex vivo and in vivo evaluation. Eur J Pharm Biopharm. 2006;64(2):246-54. doi: 10.1016/j.ejpb.2006.05.017, PMID 16870409.
Published
How to Cite
Issue
Section
Copyright (c) 2023 MAHMOUD H. TEAIMA, HUSSIEN MOHAMED AHMED EL-MESSIRY, HAJAR ABDULRADI SHAKER, MOHAMED A. EL-NABARAWI, DOAA A. HELAL
This work is licensed under a Creative Commons Attribution 4.0 International License.