A COMPARISON OF KINETIC STUDIES OF KAOLIN CLAY AND RICE HUSKS FOR CIPROFLOXACIN ADSORPTION

Authors

DOI:

https://doi.org/10.22159/ijap.2023v15i3.46495

Keywords:

Ciprofloxacin, Rice husks, Iraqi kaolin clay, Freundlich, Langmuir and Temkin equations, Adsorption kinetics

Abstract

Objective: to compare the absorption of this drug on two surfaces of Iraqi kaolin and rice husks, which are considered environmentally friendly natural products and available locally.

Methods: Ciprofloxacin adsorption from an aqueous solution was studied with respect to contact time, pH, and concentration. 30 min was determined to be the equilibrium time. Increasing the drug concentration on both adsorbents increased the adsorption rate, and the data fit well into a pseudo-second-order model. The solution concentration was analysed by UV-visible spectroscopy. Then the amount of adsorption was calculated, as well as the study of the reaction kinetics for both surfaces. The rice husk adsorbent showed faster removal with higher uptake than the Kaolin clay in both SGF and SIF solutions.

Results: The adsorption isotherms of type (S4, S2) were found on the surface of rice husks and kaolin clay type (L3, L4) in stomach and intestine fluids, respectively. On Iraqi kaolin clay, adsorption is well described by the pseudo-second-order model, and the Tempkin adsorption isotherm provides a good fit for the Stomach. Whereas adsorption on rice husk is well described by the Freundlich isotherm, which is a good fit for the intestine. the adsorption is predominantly physical. The best maximum adsorption capacities were calculated on both surfaces in the following order: stomach-kaolin>intestinal fluids-rice husks>stomach-rice husks>intestinal fluids-kaolin.

Conclusion: Both kaolin and rice husk are possible adsorbents that could be used to get antibiotics out of water.

Downloads

Download data is not yet available.

References

Swarnamoni D, Mukundam B, Shagufa A. Antibacterial activity of the ethanolic extract of leaves of citrus maxima (Burm.) merr. on Escherichia coli and Pseudomonas aeruginosa. Asian J Pharm Clin Res. 2013;6(4):136-9.

Aswathy SR, Muhas C, Sruthy AS, Deviswapna PV, Gopinath U. Validation and application of RP-HPLC method for quantification of enrofloxacin in pure and veterinary dosage forms. Int J Pharm Pharm Sci 2022;14(2):42-7. doi:10.22159/ijpps.2022v14i2.43053.

Pashikanti S, BJ. Formulation and evaluation of floating in situ gel of ciprofloxacin. Int J App Pharm 2019;11(1). doi: 10.22159/ijap.2019v11i1.28603.

Mourad T, Ahmed S. A computational study of ciprofloxacin metabolites and some natural compounds against resistant methicillin staphyllococcus aureus (MRSA). Int J Pharm Pharm Sci 2022;14(8):22-8. doi:10.22159/ijpps.2022v14i8.44560.

Hansmann S, Miyaji Y, Dressman J. An in silico approach to determine challenges in the bioavailability of ciprofloxacin, a poorly soluble weak base with borderline solubility and permeability characteristics. Eur J Pharm Biopharm. 2018;122:186-96. doi: 10.1016/j.ejpb.2017.10.019, PMID 29111469.

Dang BT, Gotore O, Ramaraj R, Unpaprom Y, Whangchai N, Bui X. Sustainability and application of corncob-derived biochar for removal of fluoroquinolones. Biomass Conv Bioref. 2022;12(3):913-23. doi: 10.1007/s13399-020-01222-x.

Xu XR, Li XY. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere. 2010;78(4):430-6. doi: 10.1016/j.chemosphere.2009.10.045. PMID 19913873.

NM, Renita AA, Kumar PS, Abraham LS. Adsorption of ciprofloxacin from aqueous solution using surface improved tamarind shell as an economical and effective adsorbent. Int J Phytoremediation. 2022;24(3):224-34. doi: 10.1080/15226514.2021.1932730.

Bhandari A, Close L, Kim IW, Hunter RP, Koch DE, Surampalli RY. Occurrence of ciprofloxacin, sulfamethoxazole, and azithromycin in municipal wastewater treatment plants. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. 2008;12(4):275-81. doi: 10.1061/ASCE1090-025X200812:4275.

Carmosini N, Lee LS. Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials. Chemosphere. 2009;77(6):813-20. doi: 10.1016/j.chemosphere.2009.08.003.

Li Z, Hong H, Liao L, Ackley CJ, Schulz LA, MacDonald RA. A mechanistic study of ciprofloxacin removal by kaolinite. Colloids Surf B Biointerfaces. 2011;88(1):339-44. doi: 10.1016/j.colsurfb.2011.07.011. PMID 21802909.

Jawad AH, Abdulhameed AS. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: adsorption kinetic, isotherm and mechanism study. Surf Interfaces. 2020;18:100422. doi: 10.1016/j.surfin.2019.100422.

El-Shafey ESI, Al-Lawati H, Al-Sumri AS. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J Environ Sci (China). 2012;24(9):1579-86. doi: 10.1016/S1001-0742(11)60949-2, PMID 23520864.

Alavi S, Shamshiri S, Pariz Z, Dargahi A, Mohamadi M, Fathi S. Evaluating the palm leaves efficiency as a natural adsorbent for removing cadmium from aqueous solutions: isotherm adsorption study. Int J Pharm Technol. 2016;8(2):13919-29.

Igwegbe CA, Oba SN, Aniagor CO, Adeniyi AG, Ighalo JO. Adsorption of ciprofloxacin from water: a comprehensive review. J Ind Eng Chem. 2021;93:57-77. doi: 10.1016/j.jiec.2020.09.023.jiec.2020.09.023.

Zhang CL, Qiao GL, Zhao F, Wang Y. Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. J Mol Liq. 2011;163(1):53-6. doi: 10.1016/j.molliq.2011.07.005.

Chen H, Gao B, Li H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J Hazard Mater. 2015;282:201-7. doi: 10.1016/j.jhazmat.2014.03.063, PMID 24755346

Roca Jalil ME, Baschini M, Sapag K. Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Applied Clay Science. 2015;114:69-76. doi: 10.1016/j.clay.2015.05.010.

Carabineiro SAC, Thavorn Amornsri T, Pereira MFR, Serp P, Figueiredo JL. Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Cat Today. 2012;186(1):29-34. doi: 10.1016/j.cattod.2011.08.020.

Genç N, Dogan EC. Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice. Desalin Water Treat. 2015;53(3):785-93. doi: 10.1080/19443994.2013.842504.

Zhang B, Han X, Gu P, Fang S, Bai J. Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J Mol Liq. 2017;238:316-25. doi: 10.1016/j.molliq.2017.04.022.

Khader EH, Mohammed TJ, Albayati TM. Comparative performance between rice husk and granular activated carbon for the removal of azo tartrazine dye from aqueous solution. Desalin Water Treat. 2021;229:372-83. doi: 10.5004/dwt.2021.27374.

Sanchez Soto PJ, Eliche Quesada D, Martinez Martinez S, Perez Villarejo L, Garzon E. Study of a waste kaolin as raw material for mullite ceramics and mullite refractories by reaction sintering. Materials (Basel). 2022;15(2):583. doi: 10.3390/ma15020583, PMID 35057297.

Adlim M, Fitri Z, Khaldun I, Dewi R, Jamilah M. Preparation and characterization compatible pellets for immobilization ofcolloidal sulphur nanoparticles. IOP Conf Ser Mater Sci Eng. 2018;334:012041.

Sah SK, Joshi D, Pathak S, Marasini N. Effect of ethanol and pH on the adsorption of diazepam from simulated gastric fluid and simulated intestinal fluid on activated charcoal in vitro. Indian J Pharm Sci 2016;78(5):624-30. doi: 10.4172/pharmaceutical-sciences.1000161.

Lu S. Analytical absorption spectrophotometry in the visible and ultraviolet: the principles. Elsevier; 2012.

Sayago UFC, Castro YP, Rivera LRC, Mariaca AG. Estimation of equilibrium times and maximum capacity of adsorption of heavy metals by E. Crassipes (review). Environ Monit Assess. 2020;192(2):141. doi: 10.1007/s10661-019-8032-9, PMID 31982980.

Obaid MH. Thermodynamic study of adsorption cationic methylene blue dye on the plant residue. Kufa J Chem. 2011;2:55-63.

Kameda T, Ito S, Yoshioka T. Kinetic and equilibrium studies of urea adsorption onto activated carbon: adsorption mechanism. J Dispers Sci Technol. 2017;38(7):1063-6. doi: 10.1080/01932691.2016.1219953.

Sinbah H, Khazaal M, Majeed N. Isotherms, kinetics and thermodynamic studies for removal the valium from stomach and intestine fluids via adsorption on egg shells powder. Indian J Forensic Med Toxicol. 2021;15(1):1121-29. doi: 10.37506/ijfmt.v15i1.13567.

Roca Jalil ME, Baschini M, Sapag K. Removal of ciprofloxacin from aqueous solutions using pillared clays. Materials (Basel). 2017;10(12):1345. doi: 10.3390/ma10121345, PMID 29168798.

Tan IAW, Ahmad AL, Hameed BH. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J Hazard Mater. 2009;164(2-3):473-82. doi: 10.1016/j.jhazmat.2008.08.025, PMID 18818013.

Kasraei R, Malakootian M, Mohamadi M. Synthesis of Fe 3 O 4 nanoparticles @Trioctylmethylammonium thiosalicylat (TOMATS) as a new magnetic nanoadsorbent for adsorption of ciprofloxacin in aqueous solution. Z Phys Chem. 2021;235(7):885-908. doi: 10.1515/zpch-2019-1585.

Published

07-05-2023

How to Cite

SINBAH, H. J., KHAZAAL, M. H., HASSEN, H. S., & HASSAN, E. S. (2023). A COMPARISON OF KINETIC STUDIES OF KAOLIN CLAY AND RICE HUSKS FOR CIPROFLOXACIN ADSORPTION. International Journal of Applied Pharmaceutics, 15(3), 132–137. https://doi.org/10.22159/ijap.2023v15i3.46495

Issue

Section

Original Article(s)