PREPARATION AND EVALUATION OF ONCE-DAILY FLOATING GMO-ALGINATE MICROSPHERES CONTAINING FAMOTIDINE

Authors

  • AMIR IBRAHIM MOHAMED Department Of Pharmaceutics And Industrial Pharmacy, Military Medical Academy, Cairo, Egypt https://orcid.org/0000-0002-2053-2050
  • MOHAMMED ISMAEL HERRY Department Of Pharmaceutics And Industrial Pharmacy, Military Medical Academy, Cairo, Egypt. https://orcid.org/0000-0003-3486-3659
  • MOHAMED A. KASSEM Department Of Pharmaceutics And Industrial Pharmacy, Faculty Of Pharmacy, Cairo University, Cairo, Egypt.
  • AHMED EL-NABARAWI Department Of Pharmaceutics And Industrial Pharmacy, Faculty Of Pharmacy, Cairo University, Cairo, Egypt.
  • MONA MOHAMED ABOELFOTOH EL KHATIB Department Of Pharmaceutics And Industrial Pharmacy, Faculty Of Pharmacy, Cairo University, Cairo, Egypt.

DOI:

https://doi.org/10.22159/ijap.2023v15i1.46503

Keywords:

Famotidine, Slightly-soluble drug, Water/Oil emulsion method, Glyceryl mono-oleate (GMO), Ca-alginate, Gastro-retentive floating microspheres

Abstract

Objective: In this work, a gastro-retentive floating microsphere delivery system composed of Drug/Glyceryl mono-oleate (GMO) embedded in a Ca-alginate gas-generated matrix was designed to improve the bioavailability of a slightly-soluble model drug Famotidine.

Methods: The water/Oil emulsion method was used to prepare Famotidine floatable microspheres, and formulation variables such as Alginate: GMO ratio, gas-generated bicarbonates concentration, and loading drug concentration were investigated. Conventional techniques, including DSC, XRD and FTIR were performed to confirm Famotidine compatibility with GMO and Alginate polymers. Real-Time X-ray Radiography was used for in vivo imaging of Famotidine floatable microspheres using rabbits as an animal model. HPLC spectroscopic technique was used to determine Famotidine plasma concentration after oral administration of Alginate-GMO loaded microspheres.

Results: Floating Famotidine Alginate-GMO microspheres (0.75:1:0.25) w/w/w showed a remarkable entrapment efficiency (>98%), good buoyancy (>84) and prolonged in vitro drug release properties (>24 hours). DSC, XRD, and FTIR techniques showed no evidence of interaction between Famotidine and Alginate or GMO. In vivo Imaging of Famotidine floatable microspheres showed that capsules containing Famotidine-Alginate microspheres were not detected after 3 h of administration, while capsules containing Famotidine-GMO-Alginate microspheres can be detected for more than 12 h, indicating superior gastric retention properties. The pharmacokinetic parameters were calculated for Famotidine: GMO-Alginate, and Famotidine: alginate and compared with the plain drug over 24 h period. Famotidine: GMO-Alginate microspheres exhibited controlled and prolonged absorption Tmax of 6.0 vs. 3.0 and 2.0 h; Cmax of 124.9±0.9 vs. 323.7±0.4and 458.6±0.5 ng/ml; AUC0-24 of 2153.025±6.7 vs. 1650.4±1.9 and 1110.725±2.1 ng/ml for Famotidine: alginate and plain drug, respectively, reflecting the increase in the bioavailability of the drug in the floating formulations compared to the free drug.

Conclusion: Prolonged gastric retention time and sustained release properties of floating GMO-alginate microsphere suggest that it could provide a valuable sustained release dosage form of slightly-soluble drugs.

Downloads

Download data is not yet available.

References

Blair KA, Beltz J. Dyspepsia: is it gastroesophageal reflux disease peptic ulcer disease? J Nurse Pract. 2006;2(3):157-63. doi: 10.1016/j.nurpra.2006.01.017.

Albadry AA, Ali WK, Al-saady FA. Formulation and evaluation of prochlorperazine maleate sustained floating release tablet. Int J Pharm Pharm Sci. 2017;9(2):89. doi: 10.22159/ ijpps.2017v9i2.15665.

Samreen M, Dev A. Formulation and evaluation of sustained release mucoadhesive matrix tablet of lamivudine. Int Res J Pharm. 2018;9(4):20-8. doi: 10.7897/2230-8407.09455.

The Merck. Index. 13th ed. Whitehouse Station: Merck & Co, Inc; 2001.

El-Dakroury WA, Zewail MB, Elsabahy M, Shabana ME, Asaad GF. Famotidine-loaded solid self-nano emulsifying drug delivery system demonstrates exceptional efficiency in amelioration of peptic ulcer. Int J Pharm. 2022;611:121303. doi: 10.1016/j.ijpharm.2021.121303, PMID 34798155.

Baack BR, Mosby GRx. The complete reference for generic and brand drugs. Plastic and Reconstructive Surgery. 8th ed. 1999;103:735.

Niharika MG, Krishnamoorthy K, Akkala M. Overview on floating drug delivery system. Int J App Pharm. 2018;10(6):65. doi: 10.22159/ijap.2018v10i6.28274.

Razavi M, Nyamathulla S, Karimian H, Noordin MI. Novel swellable polymer of orchidaceae family for gastroretentive drug delivery of famotidine. Drug Des Devel Ther. 2014;8:1315-29. doi: 10.2147/DDDT.S68517, PMID 25246773.

Abourehab MA, Khaled KA, Sarhan HA, Ahmed OA. Evaluation of combined famotidine with quercetin for the treatment of peptic ulcer: in vivo animal study. Drug Des Devel Ther. 2015;9:2159-69. doi: 10.2147/DDDT.S81109. PMID 25926722.

Maheshwar M. Formulation and evaluation of ibuprofen gastro retentive floating tablets. Indian Res J Pharm Sci. 2018;5(4):1718-25. doi: 10.21276/irjps.2018.5.4.11.

Sagalowicz L, Mezzenga R, Leser ME. Investigating reversed liquid crystalline mesophases. Curr Opin Colloid Interface Sci. 2006;11(4):224-9. doi: 10.1016/j.cocis.2006.07.002.

Spicer PT. Progress in liquid crystalline dispersions: cubosomes. Curr Opin Colloid Interface Sci. 2005;10(5-6):274-9. doi: 10.1016/j.cocis.2005.09.004.

Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev. 2001;47(2-3):229-50. doi: 10.1016/s0169-409x(01)00108-9, PMID 11311994.

Moebus K, Siepmann J, Bodmeier R. Alginate–poloxamer microparticles for controlled drug delivery to mucosal tissue. Eur J Pharm Biopharm. 2009;72(1):42-53. doi: 10.1016/j.ejpb.2008.12.004, PMID 19126428.

Puttipipatkhachorn S, Pongjanyakul T, Priprem A. Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics. Int J Pharm. 2005;293(1-2):51-62. doi: 10.1016/j.ijpharm.2004.12.006, PMID 15778044.

Gao C, Liu M, Chen J, Zhang X. Preparation and controlled degradation of oxidized sodium alginate hydrogel. Polym Degrad Stab. 2009;94(9):1405-10. doi: 10.1016/j.polymdegradstab.2009.05.011.

Mohamed AI, Ahmed OA, Amin S, Elkadi OA, Kassem MA. In vivo evaluation of clindamycin release from glyceryl monooleate-alginate microspheres by NIR spectroscopy. Int J Pharm. 2015;494(1):127-35. doi: 10.1016/j.ijpharm.2015.08.032, PMID 26276253.

Ritschel WA. Biopharmaceutic and pharmacokinetic aspects in the design of controlled release peroral drug delivery systems. Drug Dev Ind Pharm. 1989;15(6-7):1073-103. doi: 10.3109/03639048909043666.

Dahlgren D, Lennernas H. Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics. 2019;11(8):411. doi: 10.3390/pharmaceutics11080411, PMID 31412551.

Rizwan SB, Assmus D, Boehnke A, Hanley T, Boyd BJ, Rades T. Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. Eur J Pharm Biopharm. 2011;79(1):15-22. doi: 10.1016/j.ejpb.2010.12.034, PMID 21237267.

Subbarao K, Suresh G. Preparation and evaluation of floating microspheres of pramipexole HCL. AJPTR. 2018;8(4):44-58. doi: 10.46624/ajptr.2018.v8.i4.006.

Nita A, Tit DM, Copolovici L, Melinte (Frunzulica) CE, Copolovici DM, Bungau S, Iovan C. HPLC-UV method for determination of famotidine from pharmaceutical products. Revista de Chimie 2018;69:297-9.

Lemoine D, Wauters F, Bouchend’homme S, Preat V. Preparation and characterization of alginate microspheres containing a model antigen. Int J Pharm. 1998;176(1):9-19. doi: 10.1016/S0378-5173(98)00303-2.

Dhanaraju M, Sundar V, NandhaKumar S, Bhaskar K. Development and evaluation of sustained delivery of diclofenac sodium from hydrophilic polymeric beads. J Young Pharmacists. 2009;1(4):301. doi: 10.4103/0975-1483.59317.

Bessa PC, Balmayor ER, Azevedo HS, Nürnberger S, Casal M, Van Griensven M. Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. J Tissue Eng Regen Med. 2010;4(5):349-55. doi: 10.1002/term.245, PMID 20058243.

Dillen K, Vandervoort J, Van den Mooter G, Ludwig A. Evaluation of ciprofloxacin-loaded Eudragit RS100 or RL100/PLGA nanoparticles. Int J Pharm. 2006;314(1):72-82. doi: 10.1016/j.ijpharm.2006.01.041, PMID 16600538.

Chidurala M, J RR. Design and characterization of combinational domperidone-famotidine floating drug delivery system–in vitro and in vivo studies. Ars Pharm (Internet). 2021;62(2):144-62. doi: 10.30827/ars.v62i2.15810.

Campanero MA, Bueno I, Arangoa MA, Escolar M, Quetglas EG, Lopez Ocariz A. Improved selectivity in the detection of polar basic drugs by liquid chromatography-electrospray ionization mass spectrometry. Illustration using an assay method for the determination of famotidine in human plasma. J Chromatogr B Biomed Sci Appl. 2001;763(1-2):21-33. doi: 10.1016/s0378-4347(01)00355-3, PMID 11710580.

Moganti M, Shivakumar H. Formulation and evaluation of gastroretentive-floating multiparticulate system of lisinopril. Indian J Health Sci Biomed Res (KLEU). 2017;10(1):50. doi: 10.4103/2349-5006.198589.

Rai D, Pandey D, Jain NP, Jain SK. Formulation development and evaluation of floating microsphere of famotidine for the treatment of peptic ulcer. J Drug Delivery Ther. 2019;9(4-s):426-31. doi: 10.22270/jddt.v9i4-s.3350.

Ain S, Kumar B, Pathak K. Development and characterization of controlled release famotidine matrix tablets containing complexes. Int J App Pharm. 2017;9(4):38. doi: 10.22159/ijap.2017v9i4.18859.

Verma U, Naik JB, Patil JS, Yadava SK. Screening of process variables to enhance the solubility of famotidine with 2-HydroxyPropyl–β-cyclodextrin and PVP K-30 by using plackett–burman design approach. Mater Sci Eng C Mater Biol Appl. 2017;77:282-92. doi: 10.1016/j.msec.2017.03.238, PMID 28532031.

Satishbabu BK, Sandeep VR, Ravi RB, Shrutinag R. Formulation and evaluation of floating drug delivery system of famotidine. Indian J Pharm Sci. 2010;72(6):738-44. doi: 10.4103/0250-474X.84583, PMID 21969746.

Liu Y, Chen L, Zhou C, Yang J, Hou Y, Wang W. Development and evaluation of alginate-chitosan gastric floating beads loading with oxymatrine solid dispersion. Drug Dev Ind Pharm. 2016;42(3):456-63. doi: 10.3109/03639045.2015.1088866, PMID 26422447.

Ghosal K, Ray SD. Alginate/hydrophobic HPMC (60M) particulate systems: a new matrix for site-specific and controlled drug delivery. Braz J Pharm Sci. 2011;47(4):833-44. doi: 10.1590/S1984-82502011000400021.

Liew CV, Chan LW, Ching AL, Heng PWS. Evaluation of sodium alginate as drug release modifier in matrix tablets. Int J Pharm. 2006;309(1-2):25-37. doi: 10.1016/j.ijpharm.2005.10.040, PMID 16364576.

Published

07-01-2023

How to Cite

MOHAMED, A. I., HERRY, M. I., KASSEM, M. A., EL-NABARAWI, A., & EL KHATIB, M. M. A. (2023). PREPARATION AND EVALUATION OF ONCE-DAILY FLOATING GMO-ALGINATE MICROSPHERES CONTAINING FAMOTIDINE. International Journal of Applied Pharmaceutics, 15(1), 298–307. https://doi.org/10.22159/ijap.2023v15i1.46503

Issue

Section

Original Article(s)