ELECTROSPUN NANOFIBERS IN TREATMENT OF MYOCARDIAL INFARCTION: A REVIEW

Authors

  • MD ASHFAQUDDIN Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India https://orcid.org/0000-0003-4439-0656
  • VELMURUGAN V. Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India
  • M. K. KATHIRAVAN Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India https://orcid.org/0000-0001-8357-2730

DOI:

https://doi.org/10.22159/ijap.2023v15i2.46690

Keywords:

Electrospinning, Nanofibers, Myocardial Infarction, Cardiac patch, Cardiomyocytes

Abstract

At the present time, cardiovascular disease (also known as CVD) is one of the primary causes of death. In recent years, regenerative medicine, tissue engineering, and the development of novel materials have been the primary focuses of this field of study. Recently, the public's interest has been piqued by the use of electrospinning technology to produce nanofibrous materials for the treatment of cardiovascular diseases. The production of nanofibers may be accomplished in an easy and versatile way with the use of electrospinning. In this article, we will go through a number of different biodegradable polymers that may be used for the manufacturing of fibers. In addition, we provide the most recent information about the use of nanofibers in the management of myocardial infarction. This analysis comes to a close with a review of the limitations of the technology, its potential future applications for treating cardiovascular illness, and the technical challenges it faces.

Other selections include articles from Springer, information from Internet sources, and Online published articles from Wiley, Frontiers, etc.

Downloads

Download data is not yet available.

References

Roger VL, Go AS, Lloyd Jones DM, Adams RJ, Berry JD, Brown TM. Heart disease and stroke statistics-2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18-e209. doi: 10.1161/CIR.0b013e3182009701, PMID 21160056.

Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1-25. doi: 10.1016/j.jacc.2017.04.052, PMID 28527533.

Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67-e492. doi: 10.1161/CIR.0000000000000558, PMID 29386200.

Kapelko VI. Extracellular matrix alterations in cardiomyopathy: the possible crucial role in the dilative form. Exp Clin Cardiol. 2001;6(1):41-9. PMID 20428444.

Valiente Alandi I, Schafer AE, Blaxall BC. Extracellular matrix-mediated cellular communication in the heart. J Mol Cell Cardiol. 2016;91:228-37. doi: 10.1016/j.yjmcc.2016.01.011, PMID 26778458.

Dozois MD, Bahlmann LC, Zilberman Y, Tang XS. Carbon nanomaterial-enhanced scaffolds for the creation of cardiac tissue constructs: a new frontier in cardiac tissue engineering. Carbon. 2017;120:338-49. doi: 10.1016/j.carbon.2017.05.050.

Plotkin M, Vaibavi SR, Rufaihah AJ, Nithya V, Wang J, Shachaf Y. The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack. Biomaterials. 2014;35(5):1429-38. doi: 10.1016/j.biomaterials.2013.10.058, PMID 24268664.

Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I, Landa N. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci USA. 2009;106(35):14990-5. doi: 10.1073/pnas.0812242106, PMID 19706385.

Isenberg BC, Wong JY. Building structure into engineered tissues. Mater Today. 2006;9(12):54-60. doi: 10.1016/S1369-7021(06)71743-6.

Sahoo S, Tripathy J, Moin A, SM Siddaramaiah, Gowda DV. Silver nanoparticles and coconut oil incorporated biopolymer based electrospun nanofibers for wound dressing. Int J App Pharm. 2021;7:204-9. doi: 10.22159/ijap.2021v13i2.40291.

Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151-70. doi: 10.1002/adma.200400719.

Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res. 2017;50(8):1976-87. doi: 10.1021/acs.accounts.7b00218, PMID 28777535.

Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci. 2014;39(5):862-90. doi: 10.1016/j.progpolymsci.2013.06.002.

Liao Y, Loh CH, Tian M, Wang R, Fane AG. Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Prog Polym Sci. 2018;77:69-94. doi: 10.1016/j.progpolymsci.2017.10.003.

Xie J, Liu W, Younan X. Reprinted (adapted) with permission from Jiajia Xue. Electrospun Nanofibers New Concepts Mater Appl Acc Chem Res. 2017;50(8):1976-87.

Xu JF, Chen YZ, Wu D, Wu LZ, Tung CH, Yang QZ. Photoresponsive hydrogen-bonded supramolecular polymers based on a stiff stilbene unit. Angew Chem Int Ed Engl. 2013;52(37):9738-42. doi: 10.1002/anie.201303496, PMID 23868534.

Nuansing W, Georgilis E, de Oliveira TVAG, Charalambidis G, Eleta A, Coutsolelos AG. Electrospinning of tetraphenylporphyrin compounds into wires. Part Part Syst Charact. 2014;31(1):88-93. doi: 10.1002/ppsc.201300293.

Li D, Xia Y. Fabrication of titania nanofibers by electrospinning. Nano Lett. 2003;3(4):555-60. doi: 10.1021/nl034039o.

Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci. 2017;18(10). doi: 10.3390/ijms18102087, PMID 28974046.

Katritsis DG, Sotiropoulou PA, Karvouni E, Karabinos I, Korovesis S, Perez SA. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv. 2005;65(3):321-9. doi: 10.1002/ccd.20406, PMID 15954106.

Tashakori M, Rakhshan K, Ramez M. Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair. Int J Biol Macromol. 2020:6-9.

Laflamme MA, Zbinden S, Epstein SE, Murry CE. Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu Rev Pathol Mech Dis. 2007;2(1):307-39. doi: 10.1146/annurev.pathol.2.010506.092038.

Simons M, Ware JA. Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Discov. 2003;2(11):863-71. doi: 10.1038/nrd1226, PMID 14668807.

Rufaihah AJ, Yasa IC, Ramanujam VS, Arularasu SC, Kofidis T, Guler MO. Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction. Acta Biomaterialia. 2017;58:5-10102-12. doi: 10.1016/j.actbio.2017.06.009, PMID 28600129.

Ling Ling EE L, Zhao YS, Guo XM, Wang CY, Jiang H, Li J. Enrichment of cardiomyocytes derived from mouse embryonic stem cells. J Heart Lung Transplant. 2006;25(6):664-74. doi: 10.1016/j.healun.2005.12.007.

Bin Z, Sheng LG, Gang ZC, Hong J, Jun C, Bo Y. Efficient cardiomyocyte differentiation of embryonic stem cells by bone morphogenetic protein-2 combined with visceral endoderm-like cells. Cell Biol Int. 2006;30(10):769-76. doi: 10.1016/j.cellbi.2006.05.011, PMID 16831561.

Chiavegato A, Bollini S, Pozzobon M, Callegari A, Gasparotto L, Taiani J. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol. 2007;42(4):746-59. doi: 10.1016/j.yjmcc.2006.12.008, PMID 17300799.

Streeter BW, Xue J, Xia Y, Michael E, Davis ME. Davis, electrospun nanofiber-based patches for the delivery of cardiac progenitor cells. ACS Applied Materials and Interfaces. 2019;11(20):18242-53. doi: 10.1021/acsami.9b04473, PMID 31021079.

Streeter BW, Xue J, Xia Y, Davis ME. Electrospun nanofiber-based patches for the delivery of cardiac progenitor cells. ACS Appl Mater Interfaces. 2019;11(20):18242-53. doi: 10.1021/acsami.9b04473.

Li J, Minami I, Shiozaki M, Yu L, Yajima S, Miyagawa S. Human pluripotent stem cell-derived cardiac tissue-like constructs for repairing the infarcted myocardium,. Stem Cell Reports. 2017;9(5):1546-59. doi: 10.1016/j.stemcr.2017.09.007, PMID 29107590.

Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA. Myosin heavy chain gene expression in human heart failure. J Clin Invest. 1997;100(9):2362-70. doi: 10.1172/JCI119776, PMID 9410916.

Hitscherich P, Aphale A, Gordan R, Whitaker R, Singh P, Xie LH, Patra P, Lee EJ. Electroactive graphene composite scaffolds for cardiac tissue engineering. J Biomed Mater Res Part A. 2018;106A(11):2923-33. doi: 10.1002/jbm.a.36481, PMID 30325093.

Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013;7(3):2369-80. doi: 10.1021/nn305559j, PMID 23363247.

Chan V, Raman R, Cvetkovic C, Bashir R. Enabling microscale and nanoscale approaches for bioengineered cardiac tissue. ACS Nano. 2013;7(3):1830-7. doi: 10.1021/nn401098c, PMID 23527748.

Aguilar JO, Aviles F, Bautista Quijano JR, Aviles F. Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. eXPRESS Polym Lett. 2010;4(5):292-9. doi: 10.3144/expresspolymlett.2010.37.

Roy S, Mitra K, Desai C, Petrova R, Mitra S. Detonation nanodiamonds and carbon nanotubes as reinforcements in epoxy composites-a comparative study. J Nanotechnol Eng Med. 2013;4(1):11008. doi: 10.1115/1.4024663.

Nunes SS, Miklas JW, Liu J, Aschar Sobbi R, Xiao Y, Zhang B. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods. 2013;10(8):781-7. doi: 10.1038/nmeth.2524, PMID 23793239.

Hernaandez D, Millard R, Sivakumaran P, Wong RC, Crombie DE, Hewitt AW. Electrical stimulation promotes cardiac differentiation of human induced pluripotent stem cells. Stem Cells Int. 2016:1718041. doi: 10.1155/2016/1718041, PMID 26788064.

Kim T, Kahng YH, Lee T, Lee K, Kim DH. Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells. Mol Cells. 2013;36(6):577-82. doi: 10.1007/s10059-013-0277-5, PMID 24292978.

Spearman BS, Hodge AJ, Porter JL, Hardy JG, Davis ZD, Xu T, Zhang X, Schmidt CE, Hamilton MC, Lipke EA. Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells. Acta Biomater. 2015;28:109-20. doi: 10.1016/j.actbio.2015.09.025, PMID 26407651.

Ishii O, Shin M, Sueda T, Vacanti JP. In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography. J Thorac Cardiovasc Surg. 2005;130(5):1358-63. doi: 10.1016/j.jtcvs.2005.05.048, PMID 16256789.

You JO, Rafat M, Ye GJ, Auguste DT. Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett. 2011;11(9):3643-8. doi: 10.1021/nl201514a, PMID 21800912.

Wang J, Cui C, Nan H, Yu Y, Xiao Y, Poon E, Yang G, Wang X, Wang C, Li L, Boheler KR, Ma X, Cheng X, Ni Z, Chen M. Graphene sheet-induced global maturation of cardiomyocytes derived from human induced pluripotent stem cells. ACS Appl Mater Interfaces. 2017;9(31):25929-40. doi: 10.1021/acsami.7b08777, PMID 28718622.

Zhang Y, Kanter EM, Laing JG, Aprhys C, Johns DC, Kardami E, Yamada KA. Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts. Cell Commun Adhes. 2008;15(3):289-303. doi: 10.1080/15419060802198736, PMID 18923946.

Hitscherich P, Aphale A, Gordan R, Whitaker R, Singh P, Xie LH. Electroactive graphene composite scaffolds for cardiac tissue engineering. J Biomed Mater Res A. 2018;106(11):2923-33. doi: 10.1002/jbm.a.36481, PMID 30325093.

Mehrabi A, Baheiraei N, Adabi M, Amirkhani Z. Development of a novel electroactive cardiac patch based on carbon nanofibers and gelatin encouraging vascularization. Appl Biochem Biotechnol. 2020;190(3):931-48. doi: 10.1007/s12010-019-03135-6, PMID 31620995.

Liang Y, Mitriashkin A, Lim TMT, Goh JC. Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials. 2021;276:121008. doi: 10.1016/j.biomaterials.2021.121008, PMID 34265591.

Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR. Controlling silk fibroin particle features for drug delivery. Biomaterials. 2010;31(16):4583-91. doi: 10.1016/j.biomaterials.2010.02.024, PMID 20219241.

Helgeson ME, Grammatikos KN, Deitzel JM, Wagner NJ. Theory and kinematic measurements of the mechanics of stable electrospun polymer jets. Polymer (Guildf). 2008;49:2924-36.

Zhao G, Qing H, Huang G, Genin GM, Lu TJ, Luo Z. Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Mater. 2018.

Fleischer S, Shevach M, Feiner R, Dvir T. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. Nanoscale. 2014;6(16):9410-4. doi: 10.1039/c4nr00300d, PMID 24744098.

Dan K, Molamma P, Guorui P, Lingling J, Ramakrishna TS, Kai D, Prabhakaran MP, Jin G, Tian L, Ramakrishna S. Potential of VEGF-encapsulated electrospun nanofibers for in vitro cardiomyogenic differentiation of human mesenchymal stem cells. Journal of Tissue Engineeri and Regenerative Medicine. 2017;11(4):1002-10. doi: 10.1002/term.1999, PMID 25631665.

Di Domenico M, D’apuzzo F, Feola A, Cito L, Monsurro A, Pierantoni GM. Cytokines and VEGF induction in orthodontic movement in animal models. J Biomed Biotechnol. 2012;2012:201689. doi: 10.1155/2012/201689. PMID 22665981.

Chiu LLY, Radisic M. Scaffolds with covalently immobilized VEGF and angiopoietin-1 for vascularization of engineered tissues. Biomaterials. 2010;31(2):226-41. doi: 10.1016/j.biomaterials.2009.09.039, PMID 19800684.

Guo HD, Cui GH, Yang JJ, Wang C, Zhu J, Zhang LS. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction,. Biochemical and Biophysical Research Communications. 2012;424(1):105-11. doi: 10.1016/j.bbrc.2012.06.080, PMID 22732415.

Kai D, Prabhakaran MP, Jin G, Tian L, Ramakrishna S. Potential of VEGF‐encapsulated electrospun nanofibers for in vitro cardiomyogenic differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med. 2017;11(4):1002-10. doi: 10.1002/term.1999, PMID 25631665.

Wang L, Wu Y, Hu T, Guo B, Ma PX. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomaterialia. 2017;59:68-81. doi: 10.1016/j.actbio.2017.06.036, PMID 28663141.

Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE, Vunjak Novakovic G. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng. 1999;64(5):580-9. doi: 10.1002/(sici)1097-0290(19990905)64:5<580::aid-bit8>3.0.co;2-x, PMID 10404238.

Zhao G, Zhang X, Lu TJ, Xu F. Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering. Adv Funct Mater. 2015;25(36):5726-38. doi: 10.1002/adfm.201502142.

Fleischer S, Feiner R, Shapira A, Ji J, Sui X, Daniel Wagner H, Dvir T. Spring-like fibers for cardiac tissue engineering. Biomaterials. 2013;34(34):8599-606. doi: 10.1016/j.biomaterials.2013.07.054, PMID 23953840.

Hsiao CW, Bai MY, Chang Y, Chung MF, Lee TY, Wu CT, Maiti B, Liao ZX, Li RK, Sung HW. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials. 2013;34(4):1063-72. doi: 10.1016/j.biomaterials.2012.10.065, PMID 23164424.

Chen J, Zhan Y, Wang Y, Han D, Tao B, Luo Z. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomaterialia. 2018;80:154-68. doi: 10.1016/j.actbio.2018.09.013, PMID 30218777.

Wu Y, Wang L, Guo B, Ma PX. Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano. 2017;11(6):5646-59. doi: 10.1021/acsnano.7b01062, PMID 28590127.

Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32(8-9):991-1007. doi: 10.1016/j.progpolymsci.2007.05.013, PMID 19543442.

Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials. 2006;27(3):388-96. doi: 10.1016/j.biomaterials.2005.06.037, PMID 16125220.

Pok S, Vitale F, Eichmann SL, Benavides OM, Pasquali M, Jacot JG. Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. ACS Nano. 2014;8(10):9822-32. doi: 10.1021/nn503693h, PMID 25233037.

Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Ex vivo expansion of adipose tissue-derived stem cells in spinner flasks. Biotechnol J. 2009;4(8):1198-209. doi: 10.1002/biot.200800130, PMID 19404993.

Naftali Shani N, Levin Kotler LP, Palevski D, Amit U, Kain D, Landa N. Left ventricular dysfunction switches mesenchymal stromal cells toward an inflammatory phenotype and impairs their reparative properties via toll-like receptor-4. Circulation. 2017;135(23):2271-87. doi: 10.1161/circulationaha.116.023527, PMID 28356441.

Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA. Myosin heavy chain gene expression in human heart failure. J Clin Invest. 1997;100(9):2362-70. doi: 10.1172/JCI119776, PMID 9410916.

Cheng V, Kazanagra R, Garcia A, Lenert L, Krishnaswamy P, Gardetto N. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J Am Coll Cardiol. 2001;37(2):386-91. doi: 10.1016/s0735-1097(00)01157-8, PMID 11216951.

Shokraei N, Asadpour S, Shokraei S, Nasrollahzadeh S, Sabet M, Faridi Majidi R, Ghanbari HM, Faridi Majidi R, Ghanbari H. Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering. Microsc Res Tech. 2019;82(8):1316-25. doi: 10.1002/jemt.23282, PMID 31062449.

Wadhwa A, Mathura V, Lewis SA. Emerging novel nanopharmaceuticals for drug delivery. Asian J Pharm Clin Res. 2018;11(7):35-42. doi: 10.22159/ajpcr.2018.v11i7.25149.

Zhou J, Chen J, Sun H, Qiu X, Mou Y, Liu Z, Duan C. Engineering the heart: Eevaluation of conductive nanomaterials for improving implant integration and cardiac function. Scientific Reports. 2014;4:3733. doi: 10.1038/srep03733, PMID 24429673.

Meng J, Han Z, Kong H, Qi X, Wang C, Xie S, Xu H. Electrospun aligned nanofibrous composite of MWCNT/polyurethane to enhance vascular endothelium cells proliferation and function. Journal of Biomedical Materials Research Part A. 2010;95(1):312-20. doi: 10.1002/jbm.a.32845, PMID 20623671.

Shokraei N, Asadpour S, Shokraei S, Nasrollahzadeh Sabet M, Faridi Majidi R, Ghanbari H. Development of electrically conductive hybrid nanofibers based on CNT‐polyurethane nanocomposite for cardiac tissue engineering. Microsc Res Tech. 2019;82(8):1316-25. doi: 10.1002/jemt.23282, PMID 31062449.

Jain A, Behera M, Mahapatra C, Sundaresan NR, Chatterjee K. Nanostructured polymer scaffold decorated with cerium oxide nanoparticles toward engineering an antioxidant and anti-hypertrophic cardiac patch. Materials Science and Engineering: C Mater Biol Appl. 2021;118:111416. doi: 10.1016/j.msec.2020.111416, PMID 33255018.

Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials. 2014;6(3):90e90. doi: 10.1038/am.2013.88.

Ghosh LD, Ravi V, Sanpui P, Sundaresan NR, Chatterjee K. Keratin mediated attachment of stem cells to augment cardiomyogenic lineage commitment. Colloids Surf B Biointerfaces. 2017;151:178-88. doi: 10.1016/j.colsurfb.2016.12.023, PMID 28012406.

Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):2181–90. doi: 10.1152/ajpheart.00554.2011, PMID 21949114.

Ohta Y, Kinugawa S, Matsushima S, Ono T, Sobirin MA, Inoue N. Oxidative stress impairs insulin signal in skeletal muscle and causes insulin resistance in postinfarct heart failure. Am J Physiol Heart Circ Physiol. 2011;300(5):H1637-44. doi: 10.1152/ajpheart.01185.2009. PMID 21335475.

Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation. 2001;104(24):2923-31. doi: 10.1161/hc4901.100526, PMID 11739307.

Jain A, Ravi V, Muhamed J, Chatterjee K, Sundaresan NR. A simplified protocol for culture of murine neonatal cardiomyocytes on nanoscale keratin coated surfaces. Int J Cardiol. 2017;232:160-70. doi: 10.1016/j.ijcard.2017.01.036, PMID 28096043.

Sarikhani M, Maity S, Mishra S, Jain A, Tamta AK, Ravi V. SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis. J Biol Chem. 2018;293(14):5281-94. doi: 10.1074/jbc.RA117.000915, PMID 29440391.

Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012;18(11):1643-50. doi: 10.1038/nm.2961, PMID 23086477.

Nazari H, Heirani Tabasi A, Hajiabbas M, Salimi Bani M, Nazari M, Pirhajati Mahabadi V. Incorporation of SPION-casein core-shells into silk-fibroin nanofibers for cardiac tissue engineering. J Cell Biochem. 2020;121(4):2981-93. doi: 10.1002/jcb.29553, PMID 31724234.

Nazari H, Heirani Tabasi A, Hajiabbas M, Salimi Bani M, Nazari M, Pirhajati Mahabadi V, Rad I, Kehtari M, Ahmadi Tafti SH, Soleimani M. Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering. Journal of Cellular Biochemistry. 2020;121(4):2981-93. doi: 10.1002/jcb.29553, PMID 31724234.

Sridharan D, Palaniappan A, Blackstone BN, Dougherty JA, Kumar N, Seshagiri PB. In situ differentiation of human-induced pluripotent stem cells into functional cardiomyocytes on a coaxial PCL-gelatin nanofibrous scaffold. Materials Science and Engineering: C Mater Biol Appl. 2021;118:111354. doi: 10.1016/j.msec.2020.111354, PMID 33254974.

Blackstone BN, Hahn JM, McFarland KL, DeBruler DM, Supp DM, Powell HM. Inflammatory response and biomechanical properties of coaxial scaffolds for engineered skin in vitro and post-grafting. Acta Biomater. 2018;80:247-57. doi: 10.1016/j.actbio.2018.09.014, PMID 30218778.

Blackstone BN, Drexler JW, Powell HM. Tunable engineered skin mechanics via coaxial electrospun fiber core diameter. Tissue Eng Part A. 2014;20(19-20):2746-55. doi: 10.1089/ten.TEA.2013.0687, PMID 24712409.

Centeno EGZ, Cimarosti H, Bithell A. 2D versus 3D-D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener. 2018;13(1):27. doi: 10.1186/s13024-018-0258-4, PMID 29788997.

Duval K, Grover H, Han LHH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling physiological events in 2D vs. 3D-D cell culture. Physiology (Bethesda). 2017;32(4):266-77. doi: 10.1152/physiol.00036.2016, PMID 28615311.

Pontes Soares C, Midlej V, de Oliveira MEW, Benchimol M, Costa ML, Mermelstein C. 2D and 3D-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression,. PLoS One. 2012;7(5):e38147. doi: 10.1371/journal.pone.0038147, PMID 22662278.

Branco MA, Cotovio JP, Rodrigues CAV, Vaz SH, Fernandes TG, Moreira LM. Transcriptomic analysis of 3D cardiac differentiation of human induced pluripotent stem cells reveals faster cardiomyocyte maturation compared to 2D culture. Sci Rep. 2019;9(1):9229. doi: 10.1038/s41598-019-45047-9, PMID 31239450.

Zuppinger C. 3D cardiac cell culture: a critical review of current technologies and applications. Front Cardiovasc Med. 2019;6(87):87. doi: 10.3389/fcvm.2019.00087, PMID 31294032.

Meier F, Freyer N, Brzeszczynska J, Knoospel F, Armstrong L, Lako M, Greuel S. Hepatic differentiation of human iPSCs in different 3D models: a comparative study. Int J Mol Med. 2017;40(6):1759-71. doi: 10.3892/ijmm.2017.3190, PMID 29039463.

Ahmadi P, Nazeri N, Derakhshan MA, Ghanbari H. Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. International Journal of Biological Macromolecules. 2021;180:590-8. doi: 10.1016/j.ijbiomac.2021.03.001, PMID 33711373.

Fernandez-d’Arlas B, Khan U, Rueda L, Coleman JN, Mondragon I, Corcuera MA, Eceiza A. Influence of hard segment content and nature on polyurethane/multiwalled carbon nanotube composites. Compos Sci Technol. 2011;71(8):1030-8. doi: 10.1016/j.compscitech.2011.02.006.

Tondnevis F, Keshvari H, Mohandesi JA. Fabrication, characterization, and in vitro evaluation of electrospun polyurethane-gelatin-carbon nanotube scaffolds for cardiovascular tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2020;108(5):2276-93. doi: 10.1002/jbm.b.34564, PMID 31967388.

Wang S, Li Y, Zhao R, Jin T, Zhang L, Li X. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties. Int J Biol Macromol. 2017;104(A):708-15. doi: 10.1016/j.ijbiomac.2017.06.044, PMID 28645765.

Nazeri N, Derakhshan MA, Faridi Majidi R, Ghanbari H. Novel electro-conductive nanocomposites based on electrospun PLGA/CNT for biomedical applications. J Mater Sci Mater Med. 2018;29(11):168. doi: 10.1007/s10856-018-6176-8, PMID 30392048.

Hasanzadeh E, Ebrahimi Barough S, Mirzaei E, Azami M, Tavangar SM, Mahmoodi N, Basiri A. Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering. J Biomed Mater Res A. 2019;107(4):802-14. doi: 10.1002/jbm.a.36596, PMID 30578713.

Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N, Dokmeci MR, Khademhosseini A. Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials. 2014;35(26):7346-54. doi: 10.1016/j.biomaterials.2014.05.014, PMID 24927679.

Mi HY, Salick MR, Jing X, Crone WC, Peng XF, Turng LS. Electrospinning of unidirectionally and orthogonally aligned thermoplastic polyurethane nanofibers: fiber orientation and cell migration. J Biomed Mater Res A. 2015;103(2):593-603. doi: 10.1002/jbm.a.35208, PMID 24771704.

Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers,. Polymer. 2002;43(11):3303-9. doi: 10.1016/S0032-3861(02)00136-2.

Mombini S, Mohammad NJ, Bakhshandeh B, Narmani A, Nourmohammadi J, Vahdat S. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int J Biol Macromol. 2019;140:278–87.

Du H, Tao L, Wang W, Liu D, Zhang Q, Sun P. Enhanced biocompatibility of poly(l lactide co epsilon caprolactone) electrospun vascular grafts via self-assembly modification. Mater Sci Eng C Mater Biol Appl. 2019;100:845-54. doi: 10.1016/j.msec.2019.03.063, PMID 30948122.

Published

07-03-2023

How to Cite

ASHFAQUDDIN, M., V., V., & KATHIRAVAN, M. K. (2023). ELECTROSPUN NANOFIBERS IN TREATMENT OF MYOCARDIAL INFARCTION: A REVIEW. International Journal of Applied Pharmaceutics, 15(2), 32–44. https://doi.org/10.22159/ijap.2023v15i2.46690

Issue

Section

Review Article(s)