ABIRATERONE ACETATE LOADED SOLID LIPID NANOPARTICLES FOR IMPROVED ORAL BIOAVAILABILITY: DESIGN OF EXPERIMENTS BASED FORMULATION OPTIMIZATION, IN VITRO, EX-VIVO AND IN VIVO CHARACTERIZATION
DOI:
https://doi.org/10.22159/ijap.2023v15i2.46710Keywords:
Abiraterone acetate, Solid lipid nanoparticles, Sustained release, BCS class IV drugs, Design of experimentsAbstract
Objective: Abiraterone acetate (AA), a BCS Class IV drug, demonstrates biopharmaceutical challenges like polymorphism, poor solubility (<0.5 μg/ml), inconsistent permeability, and low oral bioavailability (<10%) (Hence requires a high dose of 1000 mg/day). The current research’s main objective is to improve oral bioavailability by manufacturing AA-loaded solid lipid nanoparticles (AA-SLNs).
Methods: SLNs were manufactured using hot homogenization followed by an ultra-sonication method. Initial screening of lipids (Glyceryl monostearate (GMS), Glyceryl Monooleate (GMO)), and surfactants (Tween 80 and Span 20) was done by mixture design. Based on statistical analysis, GMO and Tween 80 were selected for further optimization, and Central composite design (CCD) of experiments were done to optimize the composition using particle size, polydispersity index (PDI), encapsulation efficiency (EE), zeta potential, and cumulative % drug release as responses. Comparative ex-vivo and in vivo evaluations of optimized formulation were done with the pure drug and marketed formulation.
Results: Based on the statistical evaluation, GMO-4.4% and Tween 80-3.6% were optimized. Optimized AA-SLNs were found in a spherical shape with size of 286.7±12.6 nm, PDI of 0.138±0.015, EE of 94.0±1.0 %, and zeta potential of-25.0±1.0 mV. Drug release from optimized formulation was extended for 24 h, and ex-vivo permeability was increased by 2.5 and 1.42 times, whereas Relative Oral bioavailability was improved by 6.36 and 1.99 times compared to pure drug and marketed tablets, respectively.
Conclusion: The results concluded that AA-SLNs showed increased oral bioavailability compared to the pure drug and marketed formulation. Hence the dose of the formulation can be reduced to achieve the desired therapeutic effect.
Downloads
References
US Food and Drug Administration. U. S. Department of Health and Human Services. Clin Pharmacol Biopharm (s); Center for drug evaluation and research; 2011. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202379Orig1s000ClinPharmR.pdf. [Last accessed on 26 Jun 2022].
US Food and Drug Administration. U.S. Department of Health and Human Services. Guidance for Industry; M9 Biopharmaceutics classification system based biowaivers. Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER); 2021. Available from: https://www.fda.gov/media/148472/download. [Last accessed on 26 Jun 2022].
US Food and Drug Administration. U.S. Department of Health and Human Services. Labeling-Package Insert. Vol. 35; 2021. Available from: https://www.accessdata.fda.gov/ drugsatfda_docs/label/2021/202379s035lbl.pdf. [Last accessed on 26 Jun 2022]
Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10(45):26777-91. doi: 10.1039/D0RA03491F, PMID 35515778.
Müller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of state of the art. Eur J Pharm Biopharm. 2000 Jul;50(1):161-77. doi: 10.1016/s0939-6411(00)00087-4, PMID 10840199.
Baishya B, Rahman SS, Rynjah D, Barman K, Bordoloi SS, Islam J. Enhancing of oral bioavailability of poorly water-soluble antihypertensive drugs. Int J Curr Pharm Sci. 2021;13(4, Jul):42-7. doi: 10.22159/ijcpr.2021v13i4.42741.
de Carvalho SM, Noronha CM, Floriani CL, Lino RC, Rocha G, Bellettini IC. Optimization of α-tocopherol loaded solid lipid nanoparticles by central composite design. Ind Crops Prod. 2013;49:278-85. doi: 10.1016/j.indcrop.2013.04.054.
Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2-3):165-96. doi: 10.1016/S0169-409X(01)00105-3, PMID 11311991.
Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic ”design of experiments.” part i: Fundamental aspects. Crit Rev Ther Drug Carrier Syst. 2005;22(1):27-105. doi: 10.1615/critrevtherdrugcarriersyst.v22.i1.20. PMID 15715503.
Wang Q, Wong CH, Chan HYE, Lee WY, Zuo Z. Statistical design of experiment (Doe) based development and optimization of DB213 in situ thermosensitive gel for intranasal delivery. Int J Pharm. 2018 Mar 25;539(1-2):50-7. doi: 10.1016/j.ijpharm.2018.01.032. PMID 29366939.
Baş D, Boyacı İH. Modeling and optimization I: Usability of response surface methodology. J Food Eng. 2007;78(3):836-45. doi: 10.1016/j.jfoodeng.2005.11.024.
Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a box-Behnken design. Int J Nanomedicine. 2011;6:683-92. doi: 10.2147/IJN.S17386. PMID 21556343.
Krstic, Marko, Razic, Slavica, Djekic, Ljiljana, Dobricic, Vladimir, Momcilovic, Milica, Vasiljevic, Dragana, Ibric, Svetlana. Application of a mixture experimental design in the optimization of the formulation of solid self-emulsifying drug delivery systems containing carbamazepine. Lat Am J Pharm. 2015;34:885-94.
Abdelbary G, Fahmy RH. Diazepam-loaded solid lipid nanoparticles: design and characterization. AAPS PharmSciTech. 2009;10(1):211-9. doi: 10.1208/s12249-009-9197-2, PMID 19277870.
Beg S, Malik AK, Afzal O, Altamimi ASA, Kazmi I, Al-Abbasi FA. Systematic development and validation of a RP-HPLC method for estimation of abiraterone acetate and its degradation products. J Chromatogr Sci. 2021;59(1):79-87. doi: 10.1093/chromsci/bmaa080, PMID 33169159.
Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high-pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. BioMed Res Int. 2017;2017:5984014. doi: 10.1155/2017/5984014, PMID 28243600.
Hassan H, Adam SK, Alias E, Meor Mohd Affandi MMR, Shamsuddin AF, Basir R. Central composite design for formulation and optimization of solid lipid nanoparticles to enhance oral bioavailability of acyclovir. Molecules. 2021;26(18):7. doi: 10.3390/molecules26185432, PMID 34576904.
Varshosaz J, Ghaffari S, Khoshayand MR, Atyabi F, Azarmi S, Kobarfard F. Development and optimization of solid lipid nanoparticles of amikacin by central composite design. J Liposome Res. 2010;20(2):97-104. doi: 10.3109/08982100903103904, PMID 19621981.
Emara LH, Emam MF, Taha NF, El-ashmawy AA, Mursi NM. In vitro dissolution study of meloxicam immediate release products using flow-through cell (usp apparatus 4) under different operational conditions. Int J Pharm Pharm Sci. 2014 Nov 1;6(11):254-60.
Fecioru E, Klein M, Kramer J, Wacker MG. In vitro performance testing of nanoparticulate drug products for parenteral administration. Dissolution Technol. 2019;26(3):28-37. doi: 10.14227/DT260319P28.
Qiu S, Wang K, Li M. In vitro dissolution studies of immediate-release and extended-release formulations using flow-through cell apparatus 4. Dissolution Technol. 2014;21(2). doi: 10.14227/DT210214P6.
Sanchez AB, Calpena AC, Mallandrich M, Clares B. Validation of an ex vivo permeation method for the intestinal permeability of different BCS drugs and its correlation with caco-2 in vitro experiments. Pharmaceutics. 2019;11(12):638. doi: 10.3390/pharmaceutics11120638, PMID 31795506.
Obinu A, Porcu EP, Piras S, Ibba R, Carta A, Molicotti P. Solid lipid nanoparticles as formulative strategy to increase oral permeation of a molecule active in multidrug-resistant tuberculosis management. Pharmaceutics. 2020 Nov 24;12(12):1132. doi: 10.3390/pharmaceutics12121132, PMID 33255304.
Hintzen F, Laffleur F, Sarti F, Muller C, Bernkop Schnurch A. In vitro and ex vivo evaluation of an intestinal permeation enhancing self-micro emulsifying drug delivery system (SMEDDS). J Drug Deliv Sci Technol. 2013;23(3):261-7. doi: 10.1016/S1773-2247(13)50039-6.
Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016 Mar;7(2):27-31. doi: 10.4103/0976-0105.177703., PMID: 27057123, PMCID: PMC4804402.
Beg S, Malik AK, Ansari MJ, Malik AA, Ali AMA, Theyab A, Algahtani M, Almalki WH, Alharbi KS, Alenezi SK. Systematic development of solid lipid nanoparticles of abiraterone acetate with improved oral bioavailability and anticancer activity for prostate carcinoma treatment. ACS Omega. 2022 May 10;7(20):16968-79. doi: 10.1021/acsomega.1c07254., PMID 35647451.
Tokarek K, Hueso JL, Kustrowski P, Stochel G, Kyzioł A. Green synthesis of chitosan‐stabilized copper nanoparticles. Eur J Inorg Chem. 2013;28:4940-7. doi: 10.1002/ejic.201300594.
Ekambaram P, Abdul HS. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm. 2011 Jul;3(3):216-20. doi: 10.4103/0975-1483.83765., PMID: 21897661, PMC3159275.
McClements DJ. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems. Adv Colloid Interface Sci. 2012 Jun 15;174:1-30. doi: 10.1016/j.cis.2012.03.002. PMID: 22475330.
Maryam Banay Zirak MB, Akram Pezeshki A. Effect of surfactant concentration on the particle size, stability and potential zeta of beta carotene nano lipid carrier. Int J Curr Microbiol Appl Sci. 2015;4(9):924-32.
Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, Singh S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. BiomMed Res Int. 2013;2013:584549. doi: 10.1155/2013/584549. PMID 24228255, PMC3817799.
Anuj G, Devendra ST, Kripal B, Muhammad W. Development and investigation of artemether loaded binary solid lipid nanoparticles: physicochemical characterization and in situ single-pass intestinal permeability. J Drug Deliv. 2020 Dec;60. doi: 10.1016/j.jddst.2020.102072.
Deshkar SS, Bhalerao GSSG, Jadhav SMMS, Shirolkar VSSV. Formulation and optimization of topical solid lipid nanoparticles based gel of dapsone using design of experiment. Pharm Nanotechnol. 2018;6(4):264-75. doi: 10.2174/2211738506666181105141522, PMID 30394227.
Sallam MA, Marin Bosca MT. Optimization, ex vivo permeation, and stability study of lipid nanocarrier loaded gelatin capsules for the treatment of intermittent claudication. Int J Nanomedicine. 2015 Jul 13;10:4459-78. doi: 10.2147/IJN.S83123. PMID: 26203244, PMC4508069.
Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for anti-retroviral drug darunavir. Appl Nanosci. 2017;7(1-2):47-57. doi: 10.1007/s13204-017-0547-1.
Poonia N, Lather V, Narang JK, Beg S, Pandita D. Resveratrol-loaded folate targeted lipoprotein-mimetic nanoparticles with improved cytotoxicity, antioxidant activity and pharmacokinetic profile. Mater Sci Eng C Mater Biol Appl. 2020 Sep;114:1110-6. doi: 10.1016/j.msec.2020.111016. PMID: 32993976.
Schultz HB, Meola TR, Thomas N, Prestidge CA. Oral formulation strategies to improve the bioavailability and mitigate the food effect of abiraterone acetate. Int J Pharm. 2020 Mar 15;577:119069. doi: 10.1016/j.ijpharm. 2020.119069. PMID: 31981706.
Published
How to Cite
Issue
Section
Copyright (c) 2023 SURESH KONATHAM, SHASHIKALA PATANGAY
This work is licensed under a Creative Commons Attribution 4.0 International License.