• SHRUBAWATI SARKAR Department of Zoology, Derozio Memorial College, Rajarhat, West Bengal, India
  • SOUMOK SADHU Department of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland
  • RUPAK ROY SHRM Biotechnologies Pvt Ltd., Humaipur, Madhyamgram, West Bengal, India
  • SAMBIT TARAFDAR Amity Institute of Virology and Immunology, Amity University, Noida, India
  • NABANITA MUKHERJEE Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India, Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, West Bengal, India
  • MOUMITA SIL Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
  • ARUNAVA GOSWAMI Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
  • NITHAR RANJAN MADHU Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, Kolkata 700131, West Bengal, India



β-cells, Insulin, Nanotechnology, Diabetes mellitus, Stem cell therapy


Diabetes mellitus is a cumulative effect of various cellular and biochemical malfunctions which trigger the blood glucose level far beyond the normal range. From 1980 to 2014, more than 314 million individuals had diabetes. Epidemiology states that it is becoming more prevalent in low-income, middle-income, more specifically, third-world countries than the first-world countries. It showed mortality rate increased by 5% in premature ages. It was the 9th leading reason for almost 1.5 million deaths. The diagnosis clearly suggests the replacement of insulin-producing pancreatic endocrine cells. Stem cell treatment substitutes the infected or destroyed cells from pluripotent stem cells or multipotent stem cells. One of the favourite ways to understand and treat diabetes mellitus is embryonic stem cells, including pluripotent cells. The in vitro demonstration of iPSC-derived pancreatic cells for treating infection is a grizzled dream of scientists. Luckily, iPSC-derived cells combat the major problems that arose in this field and still, there are no legal and ethical bindings as well as immunological rejections. Later, the β cell of the pancreas has derived from PSCs from various patients who have diabetes. The study proves there is a wide possibility of demonstrating and rectification of clinical administration of these newly developing trends. The use of stem cell therapy in vitro, which is explicit patient research, shows various concerns related to the pathophysiology of diabetes. Successful application of procedures of screening of the apoptosis of β-cells from inbuilt cell retrieval needed to be a proper arrangement of new cell lines.


Download data is not yet available.


Aitken JP, Ortiz C, Morales Bozo I, Rojas Alcayaga G, Baeza M, Beltran C. α-2-macroglobulin in saliva is associated with glycemic control in patients with type 2 diabetes mellitus. Dis Markers. 2015 Mar;2015:128653. doi: 10.1155/2015/128653, PMID 25821337.

Harita N, Hayashi T, Sato KK, Nakamura Y, Yoneda T, Endo G. Lower serum creatinine is a new risk factor of type 2 diabetes: the Kansai healthcare study. Diabetes Care. 2009;32(3):424-6. doi: 10.2337/dc08-1265, PMID 19074997.

Pandey R, Dingari NC, Spegazzini N, Dasari RR, Horowitz GL, Barman I. Emerging trends in optical sensing of glycemic markers for diabetes monitoring. Trends Analyt Chem. 2015;64:100-8. doi: 10.1016/j.trac.2014.09.005, PMID 25598563.

Ravindran R, Gopinathan DM, Sukumaran S. Estimation of salivary glucose and glycogen content in exfoliated buccal mucosal cells of patients with type II diabetes mellitus. J Clin Diagn Res. 2015 May;9(5):ZC89-93. doi: 10.7860/JCDR/2015/11633.5971. PMID 26155572, PMCID PMC4484164.

Molitoris BA. Chap 121. Acute kidney injury. In: Goldman L, Ausiello D, editors. Cecil Medicine. 23rd ed. Amsterdam: Saunders Elsevier; 2007.

Kadashetti V, Baad R, Malik N, Shivakumar KM, Vibhute N, Belgaumi U. Glucose level estimation in diabetes mellitus by saliva: A bloodless revolution. Rom J Intern Med. 2015;53(3):248-52. doi: 10.1515/rjim-2015-0032, PMID 26710500.

American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2009;32(Suppl 1):S13–S61.

Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003 Feb 13;348(7):593-600. doi: 10.1056/NEJMoa022287, PMID 12584367.

Tapp RJ, Tikellis G, Wong TY, Harper CA, Zimmet PZ, Shaw JE. Longitudinal association of glucose metabolism with retinopathy: results from the Australian diabetes obesity and lifestyle (AusDiab) study. Diabetes Care. 2008;31(7):1349-54. doi: 10.2337/dc07-1707, PMID 18411241.

Stehouwer CD, Henry RM, Dekker JM, Nijpels G, Heine RJ, Bouter LM. Microalbuminuria is associated with impaired brachial artery, flow-mediated vasodilation in elderly individuals without and with diabetes: further evidence for a link between microalbuminuria and endothelial dysfunction-the Hoorn Study. Kidney Int Suppl. 2004;92:S42-4. doi: 10.1111/j.1523-1755.2004.09211.x, PMID 15485416.

Gupta S, Sandhu SV, Bansal H, Sharma D. Comparison of salivary and serum glucose levels in diabetic patients. J Diabetes Sci Technol. 2015;9(1):91-6. doi: 10.1177/1932296814552673, PMID 25294888.

Belce A, Uslu E, Kucur M, Umut M, Ipbüker A, Seymen HO. Evaluation of salivary sialic acid level and Cu-Zn superoxide dismutase activity in type 1 diabetes mellitus. Tohoku J Exp Med. 2000 Nov;192(3):219-25. doi: 10.1620/tjem.192.219, PMID 11249151.

Negrato CA, Tarzia O. Buccal alterations in diabetes mellitus. Diabetol Metab Syndr. 2010 Jan 15;2:3. doi: 10.1186/1758-5996-2-3, PMID 20180965, PMCID PMC2843640.

Soares MS, Batista Filho MM, Pimentel MJ, Passos IA, Chimenos Küstner E. Determination of salivary glucose in healthy adults. Med Oral Patol Oral Cir Bucal. 2009 Oct 1;14(10):e510-3. doi: 10.4317/medoral.14.e510, PMID 19680215.

Fujii S, Maeda T, Noge I, Kitagawa Y, Todoroki K, Inoue K. Determination of acetone in saliva by reversed-phase liquid chromatography with fluorescence detection and the monitoring of diabetes mellitus patients with ketoacidosis. Clin Chim Acta. 2014;430:140-4. doi: 10.1016/j.cca.2014.01.006, PMID 24508997.

Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: a mini-review. Curr Diabetes Rev. 2017;13(1):3-10. doi: 10.2174/1573399812666151016101622, PMID 26472574.

Chen W, Guo M, Wang S. Anti prostate cancer using PEGylated bombesin containing, cabazitaxel loading nano-sized drug delivery system. Drug Dev Ind Pharm. 2016;42(12):1968-76. doi: 10.1080/03639045.2016.1185438, PMID 27143168.

Meglitinide-an overview | ScienceDirect topics; 2011.

Patlak M. New weapons to combat an ancient disease: treating diabetes. FASEB J. 2002;16(14):1853. doi: 10.1096/fj.020974bkt, PMID 12468446.

Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia. 2012 Aug;55(8):2096-108. doi: 10.1007/s00125-012-2562-9, PMID 22555472.

Derosa G, Maffioli P. α-glucosidase inhibitors and their use in clinical practice. Arch Med Sci. 2012 Nov;8(5):899-906. doi: 10.5114/aoms.2012.31621. PMID 23185202.

Bradley C. The glitazones: a new treatment for type 2 diabetes mellitus. Intensive Crit Care Nurs. 2002 Jun;18(3):189-91. doi: 10.1016/s0964-3397(02)00010-1, PMID 12405274.

Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 2019 Dec;127(6):1612-26. doi: 10.1111/jam.14290. PMID 31021482.

Gupta V, Kalra S. Choosing a gliptin. Indian J Endocrinol Metab. 2011;15(4):298-308. doi: 10.4103/2230-8210.85583, PMID 22029001.

Seoudy AK, Schulte DM, Hollstein T, Bohm R, Cascorbi I, Laudes M. Gliflozins for the treatment of congestive heart failure and renal failure in type 2 diabetes. Dtsch Arztebl Int. 2021 Feb 26;118:122-9. doi: 10.3238/arztebl.m2021.0016. PMID 33531116.

Akbarzadeh A, Rezaei Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013 Feb 22;8(1):102. doi: 10.1186/1556-276X-8-102, PMID 23432972.

Yucel C, Karatoprak GS, Aktas Y. Nanoliposomal resveratrol as a novel approach to the treatment of diabetes mellitus. J Nanosci Nanotechnol. 2018 Jun 1;18(6):3856-64. doi: 10.1166/jnn.2018.15247, PMID 29442719.

Bhosale RR, Ghodake PP, Mane AN, Ghadge AA. Nanocochleates: A novel carrier for drug transfer. J Sci Innov Res. 2013;2(5):964-9.

Tilawat M, Nanocochleates Bonde S. A potential drug delivery system. J Mol Liq. 2021 Jul;334:1-11. doi: 10.1016/J.MOLLIQ.2021.116115.

Yucel C, Gokce SK, Atmar A. Novel resveratrol-loaded nanocochleates and effectiveness in the treatment of diabetes. Fabad J Pharm Sci. 2018;43(2):35-44.

Chandu VP, Arunachalam A, Jeganath S, Yamini K, Tharangini K, Chaitanya G. Niosomes: A novel drug delivery system. Nanostructures for Drug Delivery. 2012 Feb;2(1):25-31.

Pk S, PS, AJ, MC, AB. Anti-diabetic activity of lycopene niosomes: experimental observation. Journal of Pharmaceutics and Drug Development 2017;4(1). doi: 10.15744/2348-9782.4.103.

Lu M, Qiu Q, Luo X, Liu X, Sun J, Wang C. Phyto-phospholipid complexes (phytosomes): a novel strategy to improve the bioavailability of active constituents. Asian J Pharm Sci. 2019;14(3):265-74. doi: 10.1016/j.ajps.2018.05.011. PMID 32104457.

Zielińska A, Carreiro F, Oliveira AM, Neves A, Pires B, Venkatesh DN. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020 Aug;25(16):3731. doi: 10.3390/molecules25163731, PMID 32824172.

Chauhan P, Tamrakar AK, Mahajan S, Prasad GBKS. Chitosan encapsulated nano curcumin induces GLUT-4 translocation and exhibits enhanced anti-hyperglycemic function. Life Sci. 2018 Nov 15;213:226-35. doi: 10.1016/j.lfs.2018.10.027, PMID 30343126.lfs.2018.10.027.

Sonia TA, Sharma CP. An overview of natural polymers for oral insulin delivery. Drug Discov Today. 2012 Jul;17(13-14):784-92. doi: 10.1016/j.drudis.2012.03.019, PMID 22521664.

Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y. Oral nano drug delivery systems for the treatment of type 2 diabetes mellitus: an available administration strategy for antidiabetic phytocompounds. Int J Nanomedicine. 2020;15:10215-40. doi: 10.2147/IJN.S285134, PMID 33364755.

Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kaushik A, Kim KH. Antidiabetic activity enhancement in streptozotocin + nicotinamide-induced diabetic rats through combinational polymeric nanoformulation. Int J Nanomedicine. 2019;14:4383-95. doi: 10.2147/IJN.S205319. PMID 31354267.

Hamid Akash MS, Rehman K, Chen S. Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins. Polym Rev. 2015;55(3):371-406. doi: 10.1080/15583724.2014.995806.

Bassas Galia M, Follonier S, Pusnik M, Zinn M. 2-natural polymers: a source of inspiration. In: Perale G, Hilborn J, editors. Bioresorbable polymers for biomedical applications; 2017. p. 31-64. doi: 10.1016/B978-0-08-100262-9.00002-1.

Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017;159:217-31. doi: 10.1016/j.colsurfb.2017.07.038. PMID 28797972.

Samadder A, Abraham SK, Khuda Bukhsh AR. NanopharmNano pharmaceutical using pelargonidin towards enhancement of efficacy for prevention of alloxan-induced DNA damage in L6 cells via activation of PARP and p53. Environ Toxicol Pharmacol. 2016 Apr;43:27-37. doi: 10.1016/ j.etap.2016.02.010.

Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin-induced diabetic rat model. Drug Deliv Transl Res. 2012 Apr;2(2):112-23. doi: 10.1007/s13346-012-0063-5, PMID 25786720.

Torche AM, Jouan H, Le Corre P, Albina E, Primault R, Jestin A. Ex vivo and in situ PLGA microspheres uptake by pig ileal Peyer’s patch segment. Int J Pharm. 2000 May 15;201(1):15-27. doi: 10.1016/s0378-5173(00)00364-1, PMID 10867261.

Mohseni R, ArabSadeghabadi Z, Ziamajidi N, Abbasalipourkabir R, Rezaei Farimani A. Oral administration of resveratrol-loaded solid lipid nanoparticle improves insulin resistance through targeting expression of SNARE proteins in adipose and muscle tissue in rats with type 2 diabetes. Nanoscale Res Lett. 2019;14(1):227. doi: 10.1186/s11671-019-3042-7, PMID 31290033.

Xu HY, Liu CS, Huang CL, Chen L, Zheng YR, Huang SH, Long XY. Nanoemulsion improves the hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf B Biointerfaces. 2019 Sep;181:927-34. doi: 10.1016/j.colsurfb.2019.06.006. PMID 31382342.

Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment. J Environ Monit. 2011 May;13(5):1145-55. doi: 10.1039/c0em00547a, PMID 21387066.

Pednekar PP, Godiyal SC, Jadhav KR, Kadam VJ. Mesoporous silica nanoparticles: a promising multifunctional drug delivery system. Nanostruct Cancer Ther. 2017;23:593-621. doi: 10.1016/b978-0-323-46144-3.00023-4.

Huang PK, Lin SX, Tsai MJ, Leong MK, Lin SR, Kankala RK, Lee CH, Weng CF. Encapsulation of 16-hydroxycleroda-3,13-dine-16,15-olide in mesoporous silica nanoparticles as a natural dipeptidyl peptidase-4 inhibitor potentiated hypoglycemia in diabetic mice. Nanomaterials (Basel). 2017;7(5):112. doi: 10.3390/nano7050112, PMID 28498352.

Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009 Apr;19(4):429-38. doi: 10.1038/cr.2009.28, PMID 19255591.

Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL. Small molecules efficiently direct the endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell. 2009 Apr 3;4(4):348-58. doi: 10.1016/j.stem.2009.01.014, PMID 19341624.

Wandzioch E, Zaret, KS. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science. 2009;324(5935):1707-10. doi: 10.1126/science.1174497, PMID 19556507.

Andreia SB, Candy HHC, Sharon M, Hilary MD, Roger AP, Ludovic V, Kevin DBernardo AS, Cho CH, Mason S, Docherty HM, Pedersen RA, Vallier L. Biphasic induction of Pdx1 in mouse and human embryonic stem cells can mimic the development of pancreatic β-cells. Stem Cells. 2009 Feb;27(2):341-51. doi: 10.1634/stemcells.2008-0310, PMID 19056911.

Chen S, Malgorzata B, Julia LF, Rene M, Kenji O, Lance D, Kelvin L, Lee FP, Stuart LS, Lee LR, Douglas MChen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nature Chemical Biology. 2009;5(4):258-65. doi: 10.1038/nchembio.154, PMID 19287398.

Thatava T, Nelson TJ, Edukulla R, Sakuma T, Ohmine S, Tonne JM, Yamada S, Kudva Y, Terzic A, Ikeda Y. Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Ther. 2011 Mar;18(3):283-93. doi: 10.1038/gt.2010.145, PMID 21048796.

Kunisada Y, Tsubooka Yamazoe N, Shoji M, Hosoya M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res. 2012 Mar;8(2):274-84. doi: 10.1016/j.scr.2011.10.002. PMID 22056147.

Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA. 2009 Sep 15;106(37):15768-73. doi: 10.1073/pnas.0906894106, PMID 19720998.

Tateishi K, He J, Taranova O, Liang G, D'’Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem. 2008 Nov 14;283(46):31601-7. doi: 10.1074/jbc.M806597200. PMID 18782754.

Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O'Neil JJ, Ao Z, Warnock GL, Kieffer TJ. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012 Aug;61(8):2016-29. doi: 10.2337/db11-1711. Epub 2012 Jun 27. PMID 22740171.

Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, Ma Y. Reversal of hyperglycemia in diabetic mouse models using induced pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci USA. 2010 Jul;107(30):13426-31. doi: 10.1073/pnas.1007884107, PMID 20616080.

Jeon K, Lim H, Kim JH, Thuan NV, Park SH, Lim YM, Choi HY, Lee ER, Kim JH, Lee MS, Cho SG. Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev. 2012 Sep;21(14):2642-55. doi: 10.1089/scd.2011.0665, PMID 22512788.

Bouwens L, Pipeleers DG. Extra-insular β-cells associated with ductules are frequent in adult human pancreas. Diabetologia. 1998;41(6):629-33. doi: 10.1007/s001250050960, PMID 9662042.

Bouwens L, Rooman I. Regulation of pancreatic β-cell mass. Physiol Rev. 2005;85(4):1255-70. doi: 10.1152/physrev.00025.2004, PMID 16183912.

Mateizel I, Temmerman ND, Ullmann U, Cauffman G, Sermon K, Velde HV, Rycke MD, Degreef E, Devroey P, Liebaers I, Steirteghem AVMateizel I, De Temmerman N, Ullmann U, Cauffman G, Sermon K, Van de Velde H. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Human Reproduction. 2006;21(2):503-11. doi: 10.1093/humrep/dei345, PMID 16284066.

Lee G, Studer L. Induced pluripotent stem cell technology for the study of human disease. Nature Methods. 2010;7(1):25-7. doi: 10.1038/nmeth.f.283, PMID 20038952.

Kudva YC, Ohmine S, Greder LV, Dutton JR, Armstrong A, De Lamo JG, Khan YK, Thatava T, Hasegawa M, Fusaki N, Slack JM, Ikeda Y. Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med. 2012 Jun;1(6):451-61. doi: 10.5966/sctm.2011-0044, PMID 23197849.

Wernig M, Meissner A, Cassady JP, Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell. 2008 Jan;2(1):10-2. doi: 10.1016/j.stem.2007.12.001. PMID 18371415.

Obokata H, Sasai Y, Niwa H, Kadota M, Andrabi M, Takata N, Tokoro M, Terashita Y, Yonemura S, Vacanti CA, Wakayama T. Bidirectional developmental potential in reprogrammed cells with acquired pluripotency. Nature. 2014;505(7485):676-80. doi: 10.1038/nature12969, PMID 24476891.

Byrne MM, Sturis J, Clement K, Vionnet N, Pueyo ME, Stoffel M, Takeda J, Passa P, Cohen D, Bell GI. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest. 1994 Mar;93(3):1120-30. doi: 10.1172/JCI117064, PMID 8132752.

Assche FA, Aerts L, Prins FD. A morphological study of the endocrine pancreas in human pregnancy. Br J Obstet Gynaecol. 1978;85(11):818-20. doi: 10.1111/j.1471-0528.1978.tb15835.x.

Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA. Very slow turnover of β-cells in aged adult mice. Diabetes. 2005;54(9):2557-67. doi: 10.2337/diabetes.54.9.2557, PMID 16123343.

Aleti R, Baratam SR, Jagirapu B, Kudamala S. Formulation and evaluation of metformin hydrochloride and gliclazide sustained release bilayer tablets: combination therapy in the management of diabetes. Int J App Pharm. 2021;13(5):343-50.

Kondeti HP, Sankar Dannana G. Development and validation of a stability-indicating RP-HPLC method for the estimation of metformin, saxagliptin, and dapagliflozin. Asian J Pharm Clin Res 2022;15:72-7. doi: 10.22159/ajpcr.2022.v15i3.42117.

Mussttaf GS, Habib A, Mahtook M. Drug prescribing pattern and cost-effectiveness analysis of oral antidiabetic drugs in patients with type-2 diabetes mellitus: real-world data from Indian population. Asian J Pharm Clin Res. 2021 May;14(7):45-9. doi: 10.22159/ajpcr.2021.v14i7.41677.

Finegood DT, Scaglia L, Bonner Weir S. Dynamics of β-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes American Diabetes Association. 1995;44(3):249-56. doi: 10.2337/diab.44.3.249, PMID 7883109.



How to Cite

SARKAR, S., SADHU, S., ROY, R., TARAFDAR, S., MUKHERJEE, N., SIL, M., GOSWAMI, A., & MADHU, N. R. (2023). CONTEMPORARY DRIFTS IN DIABETES MANAGEMENT. International Journal of Applied Pharmaceutics, 15(2), 1–9.



Review Article(s)