RECENT DEVELOPMENT OF RADIONUCLIDE-BASED IMAGING IN DIAGNOSIS AND THERAPY OF LUNG CANCER: A REVIEW
DOI:
https://doi.org/10.22159/ijap.2022.v14s4.PP05Keywords:
Lung cancer, Radiopharmaceutical, Radionuclide, Systematic reviewAbstract
This review was conducted to review the recent development of radionuclides that potentially used in diagnosis and therapy of lung cancer. A comprehensive article search used a systematic review method based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The article search was conducted using online databases, such as PubMed, ScienceDirect, and Google scholar with inclusion criteria: studies are related to lung cancer and radiopharmaceuticals, contained clinical research results, and were published in the last five years. Five articles were selected and they were analyzed and summarized. Three studies have reported the preclinic data and two studies have reported the clinical data of a phase I study. Two of five studies showed the nuclides were potentially used for NSCLC, one of five studies showed the nuclide was potentially used for SCLC, and the other two studies showed their nuclides were potentially used for both NSCLC and SCLC. 131I-Bevacizumab and 177Lu-Satoreotide Tetraxetan are potential for therapy lung cancer which showed the reduction of tumor uptake, while 89Zr-DFO-nimotuzumab, 68Ga-3PTATE-RGD, and 89Zr-DFOPODS-DAR2SC16-MB1 are potential for diagnosis because it showed high radioactivity concentrations in tumor-bearing mice. Based on five articles, the radionuclides in included articles have shown good results that indicate they are potential. However, some radionuclides still require further complement assessment research to improve their shortcomings.
Downloads
References
World Health Organization (WHO). Cancer. Available from: https://www.who.int/health-topics/cancer#tab=tab_1. [Last accessed on 09 Jun 2022]
International Agency for Research on Cancer (IARC). All Cancers Fact Sheet. Available from: https://gco.fr:iarc/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf. [Last accessed on 09 Jun 2022]
American Cancer Society. Lung cancer. Available from: https://www.cancer.org/content/dam/CRC/PDF/Public/8703.00.pdf. [Last accessed on 09 Jun 2022]
International Atomic Energy Agency (IAEA). Diagnostic radiopharmaceuticals. Available from: https://www.iaea.org/ topics/diagnostic-radiopharmaceuticals. [Last accessed on 09 Jun 2022]
Sgouros G. Radiopharmaceutical therapy. Health Phys. 2019;116(2):175-8. doi: 10.1097/HP.0000000000001000, PMID 30585960.
Yeong CH, Cheng MH, Ng KH. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B. 2014;15(10):845-63. doi: 10.1631/jzus.B1400131. PMID 25294374.
Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160. doi: 10.1136/bmj.n160, PMID 33781993.
Lame G. Systematic literature reviews: an introduction. Proc Int Conf Eng Des. International Conference on Engineering Design. 2019;1(1):1633-42. doi: 10.1017/dsi.2019.169.
Kameswaran M, Sarma HD, Dash A. Preclinical evaluation of 131 I-Bevacizumab– A prospective agent for radioimmunotherapy in VEGF expressing cancers. Appl Radiat Isot. 2017;123:109-13. doi: 10.1016/j.apradiso.2017.02.024.
Chekol R, Solomon VR, Alizadeh E, Bernhard W, Fisher D, Hill W. 89Zr-nimotuzumab for immunoPET imaging of epidermal growth factor receptor I. Oncotarget. 2018;9(24):17117-32. doi: 10.18632/oncotarget.24965, PMID 29682209.
Liu B, Zhang Z, Wang H, Yao S. Preclinical evaluation of a dual sstr2 and integrin αvβ3-targeted heterodimer 68Ga-NOTA-3PEG4-TATE-RGD. Bioorg Med Chem. 2019;27(21):115094. doi: 10.1016/j.bmc.2019.115094. PMID 31540828.
Reidy Lagunes D, Pandit Taskar N, O’Donoghue JA, Krebs S, Staton KD, Lyashchenko SK. Phase I trial of well-differentiated neuroendocrine tumors (NETs) with radiolabeled somatostatin antagonist 177Lu-satoreotide tetraxetan. Clin Cancer Res. 2019;25(23):6939-47. doi: 10.1158/1078-0432.CCR-19-1026. PMID 31439583.
Sharma SK, Adumeau P, Keinanen O, Sisodiya V, Sarvaiya H, Tchelepi R. Synthesis and comparative in vivo evaluation of site-specifically labeled radioimmunoconjugates for DLL3-targeted ImmunoPET. Bioconjug Chem. 2021;32(7):1255-62. doi: 10.1021/acs.bioconjchem.1c00121. PMID 33835770.
Hyytiainen A, Wahbi W, Vayrynen O, Saarilahti K, Karihtala P, Salo T. Angiogenesis inhibitors for head and neck squamous cell carcinoma treatment: is there still hope? Front Oncol. 2021;11:(683570). doi: 10.3389/fonc.2021.683570, PMID 34195084.
Midgley R, Kerr D. Bevacizumab-current status and future directions. Ann Oncol. 2005;16(7):999-1004. doi: 10.1093/annonc/mdi208, PMID 15939715.
Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat Med. 2001;7(9):987-9. doi: 10.1038/nm0901-987, PMID 11533692.
Garrido G, Tikhomirov IA, Rabasa A, Yang E, Gracia E, Iznaga N. Bivalent binding by the intermediate affinity of nimotuzumab: a contribution to explain antibody clinical profile. Cancer Biol Ther. 2011;11(4):373-82. doi: 10.4161/CBT.11.4.14097, PMID 21150278.
Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43(1):260-90. doi: 10.1039/c3cs60304k, PMID 24173525.
Zheng K, Liang N, Zhang J, Lang L, Zhang W, Li S. 68Ga-NOTA-PRGD2 PET/CT for integrin imaging in patients with lung cancer. J Nucl Med. 2015;56(12):1823-7. doi: 10.2967/JNUMED.115.160648, PMID 26429958.
Zheng K, Liang N, Zhang J, Lang L, Zhang W, Li S. 68Ga-NOTA-PRGD2 PET/CT for integrin imaging in patients with lung cancer. J Nucl Med. 2015;56(12):1823-7. doi: 10.2967/jnumed.115.160648, PMID 26429958.
Kayani I, Conry BG, Groves AM, Win T, Dickson J, Caplin M. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med. 2009;50(12):1927-32. doi: 10.2967/jnumed.109.066639, PMID 19910422.
Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ. Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-Isothiocyanatobenzyl-1,4,7-Triazacyclononane-1,4,7-Triacetic acid and feasibility studies in mice. J Nucl Med. 2008;49(5):830-6. doi: 10.2967/jnumed.107.047423, PMID 18413379.
National Cancer Institute (NCI the saurus). Lutetium Lu 177 Satoreotide tetraxetan (code C124929). Available from: https://ncit.nci.nih.gov/ncitbrowser/ConceptReport. [Last accessed on 14 Aug 2022].
Nicolas GP, Schreiter N, Kaul F, Uiters J, Bouterfa H, Kaufmann J. Sensitivity comparison of 68Ga-OPS202 and 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase II imaging study. J Nucl Med. 2018;59(6):915-21. doi: 10.2967/jnumed.117.199760. PMID 29191855.
Telo S, Calderoni L, Vichi S, Zagni F, Castellucci P, Fanti S. Alternative and new radiopharmaceutical agents for lung cancer. Curr Radiopharm. 2020;13(3):185-94. doi: 10.2174/1874471013666191223151402, PMID 31868150.
Theodoropoulos AS, Gkiozos I, Kontopyrgias G, Charpidou A, Kotteas E, Kyrgias G. Modern radiopharmaceuticals for lung cancer imaging with positron emission tomography/computed tomography scan: A systematic review. SAGE Open Med. 2020;8:2050312120961594. doi: 10.1177/2050312120961594, PMID 33062275.
Published
How to Cite
Issue
Section
Copyright (c) 2022 HOLIS ABDUL HOLIK, LEVINA ARISTAWIDYA
This work is licensed under a Creative Commons Attribution 4.0 International License.