INHIBITORY EFFECT OF CURCUMIN INCORPORATED IN CHITOSAN NANOPARTICLE ON α-AMYLASE AND α-GLUCOSIDASE ACTIVITIES
DOI:
https://doi.org/10.22159/ijap.2022.v14s4.OP06Keywords:
Curcumin, Nanoparticle, α-amylase, α-glucosidaseAbstract
Objective: This research was conducted to determine inhibition activity of curcumin nanoparticles against α-amylase and α-glucosidase enzymes.
Methods: Curcumin nanoparticle was made by ionic gelation method using chitosan as cation, sodium tripolyphosphate as polyanion, and tween 80 as surfactant. Curcumin nanoparticles were tested for inhibitory activity of α-amylase and α-glucosidase enzymes using UV-Vis spectrophotometry at λ= 595 nm and 305 nm, respectively.
Results: Curcumin nanoparticles produced have 198.1 nm of particle size with PdI value of 0.349 and zeta potential value of-8,33 mV. The IC50 value of curcumin nanoparticles against α-amylase was 56.140 ppm, while acarbose was 63.32 ppm. While the IC50 value against α-glucosidase was 3.95 ppm and 4.11 ppm for curcumin nanoparticles and acarbose, respectively.
Conclusion: It can be concluded that curcumin nanoparticles have great potential as antihyperglycemic by inhibiting α-amylase and α-glucosidase enzymes.
Downloads
References
Nurdin SU, Sukohar A, Ramadani OS. Antiglucosidase and antioxidant activities of ginger, cinnamon, turmeric and their combination. Int J Pharm Pharmacetical Res. 2017;1:296-306.
Africa S. The mechanism of action of oral antidiabetic drugs: a review of recent literature. J Endocrinol Metab Diabetes S Afr. 2014;9677:80-8.
Mahargyani W. Uji aktivitas antidiabetes ekstrak n-heksan kulit buah naga merah (Hylocereus polyrhyzus). Edu Chemia. 2019;4(1):13-23. doi: 10.30870/educhemia.v4i1.3958.
Neena S, Bramhaiah K, Indu P, Kavitha C. Films of reduced graphene oxide-based metal oxide nanoparticles. Nanoelectronic Mater Devices. 2018:19-27.
Maryam SM, Suhaenah A, Amrullah NF. Uji aktivitas penghambatan enzim α-glukosidase ekstrak etanol Biji buah alpukat sangrai (Persea americana Mill.) secara in vitro. Jurn As-Syifaa. 2020;12(1):51-6. doi: 10.33096/jifa.v12i1.619.
Shelma R, Sharma CP. In vitro and in vivo evaluation of curcumin-loaded lauroyl sulphated chitosan for enhancing oral bioavailability. Carbohydr Polym. 2013;95(1):441-8. doi: 10.1016/j.carbpol.2013.02.029, PMID 23618291.
Ramadon D, Im AMUN. Pemanfaatan nanoteknologi dalam sistem penghantaran obat baru untuk produk bahan alam [Utilization of nanotechnology in drug delivery system for natural products]. J Ilmu Kefarmasian Indones. 2016;14(2):118-27.
Hatidjah N, Halid A, Akib NI. Preparation of curcumin nanoparticle by using reinforcement ionic gelation technique. AIP Conf Proc. 2017;1:1-7.
Herdiana Y, Handaresta DF, Joni IM, Wathoni N, Muchtaridi M. Synthesis of nano-α mangostin based on chitosan and Eudragit S 100. J Adv Pharm Technol Res. 2020;11(3):95-100. doi: 10.4103/japtr.JAPTR_182_19, PMID 33102191.
Mardliyati E, El S, Ria D. Sintesis nanopartikel Kitosan-Trypoly phosphate dengan metode Gelasi Ionik: pengaruh konsentrasi dan rasio volume terhadap karakteristik partikel Sintesis nanopartikel Kitosan-TPP. Prosiding Pertemuan Ilmiah Ilmu Pengetahuan Teknol Bahan. 2012:90-3.
Elgadir MA, Uddin S, Ferdosh S, Adam A, Jalal A, Chowdhury K. ScienceDirect Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal. 2014;23(4):619-29.
Ban C, Jo M, Park YH, Kim JH, Han JY, Lee KW. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem. 2020;302:125328. doi: 10.1016/j.foodchem.2019.125328. PMID 31404868.
auliawan.pdf.
Mohanraj VJ, Chen Y. Nanoparticles–a review. Trop J Pharm Res. 2006;5(1):561-73. doi: 10.4314/tjpr.v5i1.14634.
Abdassah M, Ionik N Dengan G. Nanopartikel Dengan Gelasi Ionik. Farmaka J. 2009;15(1):45-52.
Laili HN, Winarti L, Oktora L, Kumala R. Preparasi dan karakterisasi nanopartikel kitosan-naringenin dengan variasi rasio massa kitosan-natrium tripolifosfat [Preparation and characterization of naringenin-chitosan nanoparticles with various mass ratio of chitosan-sodium tripolyphosphat]. J Pustaka Kesehatan. 2014;2(2):308-13.
Murdock RC, Braydich Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008;101(2):239-53. doi: 10.1093/toxsci/kfm240, PMID 17872897.
Rezkita F, Wibawa KGP, Nugraha AP. Curcumin loaded chitosan nanoparticle for accelerating the postextraction wound healing in diabetes mellitus patient: a review. Res J Pharm Technol. 2020;13(2):1039-42. doi: 10.5958/0974-360X.2020.00191.2.
Nurcholis W, Ambarsari L, Permasku G, Darusman LK, Kurniatin PA. Analisis kandungan kurkuminoid dan penghambatan α-glukosidase dari ekstrak beberapa aksesi temulawak (Curcuma Xanthorrhiza RoxB.) [Curcuminoids Content and α-glucosidase Inhibition of Extract Promising Lines of Curcuma Xanthorrhiza RoxB]. J Ilmu Kefarmasian Indones. 2015;13(2):229-34.
Agada R, Usman WA, Shehu S, Thagariki D. In vitro and in vivo inhibitory effects of Carica papaya seed on α-amylase and α-glucosidase enzymes. Heliyon. 2020;6(3):e03618. doi: 10.1016/j.heliyon.2020.e03618, PMID 32258473.
Published
How to Cite
Issue
Section
Copyright (c) 2022 WINDA T WULANDARI, LILIS TUSLINAH, ADE Y APRILLIA, RATNA ANGGRAENI, SHAFA A BUDIANI
This work is licensed under a Creative Commons Attribution 4.0 International License.