PARTICLE DESIGN OF KETOCONAZOLE BY SPHERICAL CRYSTALLIZATION
DOI:
https://doi.org/10.22159/ijap.2022.v14s4.PP18Keywords:
Ketoconazole, Spherical crystallization, Particle designAbstract
Objective: This research aimed to make ketoconazole spherical crystals to improve the micromeritic properties and the dissolution rate using the solvent change method.
Methods: The solvent that is used in the process of spherical crystallization consists of three types: ether (good solvent), distilled water (bad solvent), and n-hexane (bridging liquid), with a 20:70:10 ratio each. The agglomerates were characterized by differential scanning calorimetry (DSC, powder X-ray diffraction (XRPD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM).
Results: Based on PXRD, DSC, and FTIR spectrophotometer results, it was determined that there was no internal change of ketoconazole crystalline structure during the recrystallization process into spherical crystals, and SEM results revealed that the morphology of the crystal became spherical. Based on the micromeritic properties evaluation results, it was concluded that the ketoconazole spherical crystals have superior micromeritic properties than the conventional ketoconazole. The dissolution test results showed an enhancement in the dissolution rate of spherical crystals compared with the untreated ketoconazole.
Conclusion: Thus, spherical crystals of ketoconazole appear to be a viable approach for enhancing solubility characteristics and micromeritic properties, which would be highly advantageous for processing ketoconazole as a high-dose drug.
Downloads
References
Ravouru N, Penjuri SCB, Damineni S, Muni RL, Poreddy SR. Preparation and in vitro evaluation of ibuprofen spherical agglomerates. Turk J Pharm Sci. 2018;15(1):7-15. doi: 10.4274/tjps.09609, PMID 32454634.
Patra CN, Swain S, Mahanty S, Panigrahi KC. Design and characterization of aceclofenac and paracetamol spherical crystals and their tableting properties. Powder Technol. 2015;274:446-54. doi: 10.1016/j.powtec.2015.01.053.
Teychene S, Sicre N, Biscans B. Is spherical crystallization without additives possible? Chem Eng Res Des. 2010;88(12):1631-8. doi: 10.1016/j.cherd.2010.02.015.
Fadke J, Desai J, Thakkar H. Formulation development of spherical crystal agglomerates of itraconazole for preparation of directly compressible tablets with enhanced bioavailability. AAPS PharmSciTech. 2015;16(6):1434-44. doi: 10.1208/s12249-015-0332-y, PMID 25991065.
Kovacic B, Vrecer F, Planinsek O. Spherical crystallization of drugs. Acta Pharm. 2012;62(1):1-14. doi: 10.2478/v10007-012-0010-5, PMID 22472445.
Wu S, Li K, Zhang T, Gong J. Size control of atorvastatin calcium particles based on spherical agglomeration. Chem Eng Technol. 2015;38(6):1081-7. doi: 10.1002/ceat.201400721.
Indra I, Soewandhi SN, Wikarsa S, Prasetya Y. Designing and characterization of ramipril spherical agglomerates. Int J Pharmacol Res. 2020;12(02):3177-83.
Maghsoodi M, Derakhshandeh K, Yari Z. On the mechanism of agglomeration in suspension. Adv Pharm Bull. 2012;2(1):25-30. doi: 10.5681/apb.2012.004, PMID 24312767.
Maghsoodi M, Nokhodchi A. Agglomeration of celecoxib by quasi emulsion solvent diffusion method: effect of stabilizer. Adv Pharm Bull. 2016;6(4):607-16. doi: 10.15171/apb.2016.075, PMID 28101468.
Indra I, Janah FM, Aryani R. Enhancing the solubility of ketoconazole via pharmaceutical cocrystal. J Phys: Conf Ser. 2019;1179(1). doi: 10.1088/1742-6596/1179/1/012134.
Martin FA, Pop MM, Borodi G, Filip X, Kacso I. Ketoconazole salt and co-crystals with enhanced aqueous solubility. Cryst Growth Des. 2013;13(10):4295-304. doi: 10.1021/cg400638g.
Kotbantao G, Charoenchaitrakool M. Processing of ketoconazole-4-aminobenzoic acid cocrystals using dense CO2 as an antisolvent. J CO2 Util. 2017;17:213-9. doi: 10.1016/j.jcou.2016.12.007.
Setianto AB, Nugraha YP, Suendo V, Ainurofiq A, Uekusa H, Soewandhi SN. X-ray diffraction and vibrational spectroscopic studies of the intermolecular interactions on the grinding and compaction behaviors of lopinavir and ritonavir crystals. Acta Pol Pharm Drug Res. 2020;77(2):259-69.
Maghsoodi M, Taghizadeh O, Martin GP, Nokhodchi A. Particle design of naproxen-disintegrant agglomerates for direct compression by a crystallo-co-agglomeration technique. Int J Pharm. 2008;351(1-2):45-54. doi: 10.1016/j.ijpharm.2007.09.033, PMID 17980983.
Nugraha YP, Uekusa H. Suppressed hydration in metoclopramide hydrochloride by salt cocrystallization. Cryst Eng Comm. 2018;20(19):2653-62. doi: 10.1039/C8CE00129D.
Kedia K, Wairkar S. Improved Micromeritics, packing properties and compressibility of high dose drug, cycloserine, by spherical crystallization. Powder Technol. 2019 Feb;344:665-72. doi: 10.1016/j.powtec.2018.12.068.
Garala KC, Patel JM, Dhingani AP, Dharamsi AT. Preparation and evaluation of agglomerated crystals by crystallo-co-agglomeration: an integrated approach of principal component analysis and Box-Behnken experimental design. Int J Pharm. 2013;452(1-2):135-56. doi: 10.1016/j.ijpharm.2013.04.073, PMID 23684660.
Dalvadi H, Parmar K, Yadav S. Spherical agglomeration to improve the dissolution and micromeritic properties of an anticancer drug, bicalutamide. Drug Dev Ind Pharm. 2019;45(6):968-80. doi: 10.1080/03639045.2019.1585447, PMID 30784326.
United States pharmacopeial. USP powder flow. Physical character food powders, Phys prop foods Peleg M, Bagley EB, editors. Westport: CT AVI, Inc; 2011. p. 293-323.
Lamesic D, Planinsek O, Lavric Z, Ilic I. Spherical agglomerates of lactose with enhanced mechanical properties. Int J Pharm. 2017;516(1-2):247-57. doi: 10.1016/j.ijpharm.2016.11.040, PMID 27866980.
Thakur A, Thipparaboina R, Kumar D, Sai Gouthami K, Shastri NR. Crystal-engineered albendazole with improved dissolution and material attributes. Cryst Eng Comm. 2016;18(9):1489-94. doi: 10.1039/C5CE02306H.
Published
How to Cite
Issue
Section
Copyright (c) 2022 INDRA INDRA, RISA AZAHRA, RIKA YULIANTI
This work is licensed under a Creative Commons Attribution 4.0 International License.