THE POTENTIAL OF LANGIR (ALBIZIA SAPONARIA LOUR.) STEM BARK AS ANTI-DANDRUFF: IN SILICO AND IN VITRO STUDIES
DOI:
https://doi.org/10.22159/ijap.2022.v14s5.33Keywords:
Langir, Albizia saponaria, Malassezia furfur, Dandruff, AntifungalAbstract
Objective: Dandruff is a scalp problem that occurs in almost all people in the world. The main cause of dandruff is the growth of fungus on the scalp. This study aims to evaluate the antifungal activity of the Langir bark against Malassezia furfur, in vitro and in silico.
Methods: In vitro testing was carried out using the agar diffusion method with paper disks to calculate the inhibition zones of the Langir stem bark extract and fractions, while the in silico test was carried out using the molecular docking method using Lanosterol 14-alpha demethylase receptors with a homology model using 5 compounds from the genus Albizia as ligands.
Results: Antifungal activity of Langir bark extract showed significant activity in all concentrations (5-20%), and also for all fractions (p<0.05). However, the water fraction had better activity than others, with an inhibition zone of 17.33 mm at a concentration of 15% and 18.67 mm at a concentration of 20%, while the positive control (ketoconazole 1%) had an inhibition zone of 16.67 mm. Furthermore, the in silico test revealed that the 5 metabolites in Langir plant provide better binding energy than ketoconazole (-10.1 kcal/mol), namely, Tamarixetin 3-rutinoside (-10.7 kcal/mol), Quercetin 3-rhamnosyl-galactoside (-10.4 kcal/mol), Albiziasaponin A (-11.6 kcal/mol), Albiziasaponin C (-11.9 kcal/mol) and Albiziasaponin D (-11.9 kcal/mol).
Conclusion: The water fraction of Langir bark has activity in inhibiting the growth of M. furfur so that it can be developed as a therapeutic alternative for anti-dandruff.
Downloads
References
Borda LJ, Wikramanayake TC. Seborrheic dermatitis and dandruff: A comprehensive review. J Clin Investig Dermatol. 2015 Dec;3(2). doi: 10.13188/2373-1044.1000019, PMID 27148560.
Manuel F. Is dandruff a disease? Int J Trichology. 2010 Jan;2(1):68. doi: 10.4103/0974-7753.66922, PMID 21188033.
Misery L, Rahhali N, Duhamel A, Taieb C. Epidemiology of dandruff, scalp pruritus and associated symptoms. Acta Derm Venereol. 2013;93(1):80-1. doi: 10.2340/00015555-1315, PMID 22277979.
Lopez Ponce D, Zuazo F, Cartes C, Salinas Toro D, Perez Valenzuela C, Valenzuela F. High prevalence of demodex spp. infestation among patients with posterior blepharitis: correlation with age and cylindrical dandruff. Arch Soc Esp Oftalmol. 2017 Sep;92(9):412-8. doi: 10.1016/j.oftal.2017.01.001, PMID 28552438.
Paulino LC. New perspectives on dandruff and seborrheic dermatitis: lessons we learned from bacterial and fungal skin microbiota. Eur J Dermatol. 2017 Jun;27Suppl 1:4-7. doi: 10.1684/ejd.2017.3038, PMID 28690211.
Ranganathan S, Mukhopadhyay T. Dandruff: the most commercially exploited skin disease. Indian J Dermatol. 2010;55(2):130-4. doi: 10.4103/0019-5154.62734, PMID 20606879.
Manuel F, Ranganathan S. A new postulate on two stages of dandruff: a clinical perspective. Int J Trichology. 2011 Jan;3(1):3-6. doi: 10.4103/0974-7753.82117, PMID 21769228.
Turner GA, Hoptroff M, Harding CR. Stratum corneum dysfunction in dandruff. Int J Cosmet Sci. 2012 Aug;34(4):298-306. doi: 10.1111/j.1468-2494.2012.00723.x, PMID 22515370.
Lin Q, Panchamukhi A, Li P, Shan W, Zhou H, Hou L. Malassezia and staphylococcus dominate scalp microbiome for seborrheic dermatitis. Bioprocess Biosyst Eng. 2021 May;44(5):965-75. doi: 10.1007/s00449-020-02333-5, PMID 32219537.
Rudramurthy SM, Honnavar P, Dogra S, Yegneswaran PP, Handa S, Chakrabarti A. Association of malassezia species with dandruff. Indian J Med Res. 2014 Mar;139(3):431-7. PMID 24820838.
Cabanes FJ. Malassezia yeasts: how many species infect humans and animals? PLOS Pathog. 2014 Feb;10(2):e1003892. doi: 10.1371/journal.ppat.1003892, PMID 24586146.
Punyoyai C, Sirilun S, Chantawannakul P, Chaiyana W. Development of antidandruff shampoo from the fermented product of Ocimum sanctum Linn. Cosmetics. 2018;5(3):1-12. doi: 10.3390/cosmetics5030043.
Bulmer AC, Bulmer GS. The antifungal action of dandruff shampoos. Mycopathologia. 1999;147(2):63-5. doi: 10.1023/a:1007132830164, PMID 10967964.
Loing E, Lamarque E, Borel M. New targets in the battle against dandruff. J Cosmet Sci. 2017;68(1):107-13. PMID 29465391.
Angiolella L, Carradori S, Maccallini C, Giusiano G, Supuran CT. Targeting Malassezia species for novel synthetic and natural antidandruff agents. Curr Med Chem. 2017;24(22):2392-412. doi: 10.2174/0929867324666170404110631, PMID 28393697.
Hamundu M, Sahidin R. Identifikasi dan determinasi tanaman obat tradisional masyarakat sulawesi tenggara pada arboretum prof. Mahmud Hamundu Universitas Haluoleo. Maj Farm Indones. 2008;19(2):101-7.
Hassoon IM, Kassir SA, Altaie SM. A review of plant species identification techniques. International Journal of Science and Research 2018;7(8):2016-9.
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016 Apr;6(2):71-9. doi: 10.1016/j.jpha.2015.11.005, PMID 29403965.
Afendi FM, Okada T, Yamazaki M, Hirai Morita A, Nakamura Y, Nakamura K. KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol. 2012 Feb;53(2):e1. doi: 10.1093/pcp/pcr165, PMID 22123792.
Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S. UniProt: the universal protein knowledge base. Nucleic Acids Res. 2004 Jan;32:D115-9. doi: 10.1093/nar/gkh131, PMID 14681372.
Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003 Jul;31(13):3381-5. doi: 10.1093/nar/gkg520, PMID 12824332.
McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004 Jul;32:W20-5. doi: 10.1093/nar/gkh435, PMID 15215342.
Hollingsworth SA, Karplus PA. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol Concepts. 2010 Oct;1(3-4):271-83. doi: 10.1515/BMC.2010.022, PMID 21436958.
Huey R, Morris GM, Forli S. Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. Mol: Scripps Research Institute; 2012.
Abdurrahman S, Ruslin R, Hasanah AN, Mustarichie R, Ifaya M. Active antialopecia chemical identification of merremia peltata leaves and computational study toward androgen receptor using molecular docking and molecular dynamic simulation. Scientific World Journal. 2022;2022:1123047. doi: 10.1155/2022/1123047. PMID 35978863.
Fiser A. Template-based protein structure modeling. Methods Mol Biol. 2010;673:73-94. doi: 10.1007/978-1-60761-842-3_6, PMID 20835794.
Ho BK, Brasseur R. The Ramachandran plots of glycine and pre-proline. BMC Struct Biol. 2005;5:14. doi: 10.1186/1472-6807-5-14. PMID 16105172.
Iatta R, Figueredo LA, Montagna MT, Otranto D, Cafarchia C. In vitro antifungal susceptibility of Malassezia furfur from bloodstream infections. J Med Microbiol. 2014 Nov;63(11):1467-73. doi: 10.1099/jmm.0.078709-0, PMID 25168965.
Fang Y. Ligand–receptor interaction platforms and their applications for drug discovery. Expert Opin Drug Discov. 2012;7(10):969-88. doi: 10.1517/17460441.2012.715631, PMID 22860803.
Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2016 Mar;2(3):e1501240. doi: 10.1126/sciadv.1501240, PMID 27051863.
Published
How to Cite
Issue
Section
Copyright (c) 2022 HIMANIARWATI, MUHAMMAD ARBA, YASMIWAR SUSILAWATI, RESMI MUSTARICHIE
This work is licensed under a Creative Commons Attribution 4.0 International License.