ONE POT DEVELOPMENT OF LIPID-BASED QUERCETIN SPHERICAL AGGLOMERATES FOR BIOAVAILABILITY ENHANCEMENT: IN VITRO AND IN VIVO ASSESSMENTS

Authors

  • RAKESH MISHRA Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India https://orcid.org/0000-0002-8520-1412
  • SHWETA KULKARNI Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India https://orcid.org/0000-0003-4350-1465
  • AKASH AHER Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India https://orcid.org/0009-0003-6160-4377

DOI:

https://doi.org/10.22159/ijap.2023v15i3.47266

Keywords:

Quercetin, Spherical crystallization, Anti-solvent precipitation, Solubility, Permeability, Gelucire 43/01, Lipid-based agglomerates

Abstract

Objective: Quercetin, a wonder flavanoid despite numerous pharmacological actions, has limited clinical applications due to solubility and permeability issues and additionally having shorter biological half-life. The goal of the current work was to design Quercetin lipid-based spherical crystals, to improve its oral bioavailability and sustain its in vivo plasma levels. 

Methods: An anti-solvent precipitation method was employed to prepare quercetin spherical agglomerates using ethanol and distilled water as good and bad solvents, respectively. As bridging liquid chloroform, dichloromethane, hexane and gelucire 43/01, compritol 888 as lipid carrier were screened. The drug-to-lipid polymer proportion and stirring speed effect were optimized by 3-level, 2-factor, experimental design. Numerical optimization function was employed to identify the optimum level of independent variables. Spectroscopic, micromeritic, surface morphology, size distribution, saturated solubility, in vitro dissolution, in vivo pharmackokinetic and stability studies were performed.

Results: Surface morphology studies indicated the agglomeration of quercetin needle-like fragments into a spherical shape, which further showed smooth surfaces due to entrapment of QC in lipid carrier. The spherical agglomerates of quercetin showed a four-fold improvement in aqueous solubility compared to pure drug and showed 92.13% release in 8 h. The optimised formulation showed a 3.69-fold enhancement in relative bioavailability in contrast to the marketed preparation in an in vivo pharmacokinetic analysis in male Wistar rats.

Conclusion: The obtained lipid-based spherical crystals of quercetin with enhanced bioavailability could be effectively used for its various potential pharmacological applications. The designed system can also be utilized to deliver other phytochemicals with poor bioavailability due to limited solubility and permeability.

Downloads

Download data is not yet available.

References

Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84-9. doi: 10.4103/0973-7847.194044, PMID 28082789.

D’Andrea G. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia. 2015;106:256-71. doi: 10.1016/j.fitote.2015.09.018. PMID 26393898.

Xiao L, Luo G, Tang Y, Yao P. Quercetin and iron metabolism: what we know and what we need to know. Food Chem Toxicol. 2018;114:190-203. doi: 10.1016/j.fct.2018.02.022. PMID 29432835.

Ohnishi E, Bannai H. Quercetin potentiates TNF-induced antiviral activity. Antiviral Res. 1993;22(4):327-31. doi: 10.1016/0166-3542(93)90041-g, PMID 8279819.

Nabavi SF, Russo GL, Daglia M, Nabavi SM. Role of quercetin as an alternative for obesity treatment: you are what you eat! Food Chem. 2015;179:305-10. doi: 10.1016/j.foodchem.2015.02.006. PMID 25722169.

Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S. Quercetin, inflammation and immunity. Nutrients. 2016;8(3):167. doi: 10.3390/nu8030167, PMID 26999194.

Chen S, Jiang H, Wu X, Fang J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. 2016;2016:9340637. doi: 10.1155/2016/9340637, PMID 28003714.

Zaplatic E, Bule M, Shah SZA, Uddin MS, Niaz K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci. 2019;224:109-19. doi: 10.1016/j.lfs.2019.03.055. PMID 30914316.

Jafarinia M, Sadat Hosseini M, Kasiri N, Fazel N, Fathi F, Ganjalikhani Hakemi M. Quercetin with the potential effect on allergic diseases. Allergy Asthma Clin Immunol. 2020;16(1):36. doi: 10.1186/s13223-020-00434-0, PMID 32467711.

Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother. 2020;121:109604. doi: 10.1016/j.biopha.2019.109604. PMID 31733570.

Bunlung S, Nualnoi T, Issarachot O, Wiwattanapatapee R. Development of raft-forming liquid and chewable tablet formulations incorporating quercetin solid dispersions for treatment of gastric ulcers. Saudi Pharm J. 2021;29(10):1143-154. doi: 10.1016/j.jsps.2021.08.005. PMID 34703368.

Cai X, Fang Z, Dou J, Yu A, Zhai G. Bioavailability of quercetin: problems and promises. Curr Med Chem. 2013;20(20):2572-82. doi: 10.2174/09298673113209990120, PMID 23514412.

Mishra R, Kulkarni S. A review of various pharmacological effects of quercetin with its barriers and approaches for solubility and permeability enhancement. Nat Prod J. 2022;12(4):9-21. doi: 10.2174/2210315511666211015122340.

Mukhopadhyay P, Prajapati AK. Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers-a review. RSC Adv. 2015;5(118):97547-62. doi: 10.1039/C5RA18896B.

Hu Y, Chen HL, Liang WQ. Preparation and quality evaluation of quercetin self-emulsified drug delivery systems. Zhongguo Zhong Yao Za Zhi. 2007;32(9):805-7. PMID 17639979.

Modh N, Mehta D, Parejiya P, Popat A, Barot B. An overview of recent patents on nanosuspension. Recent Pat Drug Deliv Formul. 2014;8(2):144-54. doi: 10.2174/1872211308666140422150819. PMID 24758487.

Setyawan D, Fadhil AA, Juwita D, Yusuf H, Sari R. Enhancement of solubility and dissolution rate of quercetin with solid dispersion system formation using hydroxypropyl methylcellulose matrix. Thai J Pharm Sci. 2017;41(3):112-6.

Borghetti GS, Lula IS, Sinisterra RD, Bassani VL. Quercetin/beta-cyclodextrin solid complexes prepared in aqueous solution followed by spray-drying or by physical mixture. AAPS PharmSciTech. 2009;10(1):235-42. doi: 10.1208/s12249-009-9196-3, PMID 19280349.

Kakran M, Sahoo NG, Li L. Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion. Colloids Surf B Biointerfaces. 2011;88(1):121-30. doi: 10.1016/j.colsurfb.2011.06.020. PMID 21764266.

Usha AN, Mutalik S, Reddy MS, Ranjith AK, Kushtagi P, Udupa N. Preparation and, in vitro, preclinical and clinical studies of aceclofenac spherical agglomerates. Eur J Pharm Biopharm. 2008;70(2):674-83. doi: 10.1016/j.ejpb.2008.06.010. PMID 18606224.

Kumar S, Chawla G, Bansal AK. Spherical crystallization of mebendazole to improve processability. Pharm Dev Technol. 2008;13(6):559-68. doi: 10.1080/10837450802310180, PMID 18720249.

Fadke J, Desai J, Thakkar H. Formulation development of spherical crystal agglomerates of itraconazole for preparation of directly compressible tablets with enhanced bioavailability. AAPS PharmSciTech. 2015;16(6):1434-44. doi: 10.1208/s12249-015-0332-y, PMID 25991065.

Khursheed R, Singh SK, Wadhwa S, Gulati M, Awasthi A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov Today. 2020;25(1):209-22. doi: 10.1016/j.drudis.2019.11.001. PMID 31707120.

Chaturvedi S, Verma A, Saharan VA. Lipid drug carriers for cancer therapeutics: an insight into lymphatic targeting, P-gp, CYP3A4 modulation and bioavailability enhancement. Adv Pharm Bull. 2020;10(4):524-41. doi: 10.34172/apb.2020.064, PMID 33072532.

Talari R, Varshosaz J, Mostafavi SA, Nokhodchi A. Gliclazide microcrystals prepared by two methods of in situ micronization: pharmacokinetic studies in diabetic and normal rats. AAPS PharmSciTech. 2010;11(2):786-92. doi: 10.1208/s12249-010-9441-9. PMID 20443087.

Viswanathan CL, Kulkarni SK, Kolwankar DR. Spherical agglomeration of mefenamic acid and nabumetone to improve micromeritics and solubility: a technical note. AAPS PharmSciTech. 2006;7(2):E48. doi: 10.1208/pt070248, PMID 16796365.

Mishra R, Dhole S. Lipid-based floating multiparticulate delivery system for bioavailability enhancement of berberine hydrochloride. JAPS. 2019;9(11):36-47. doi: 10.7324/JAPS.2019.91105.

Wisudyaningsih B, Setyawan D, Siswandono. Co-crystallization of quercetin and is nicotinamide using solvent evaporation method. Trop J Pharm Res. 2019;18(4):697-702. doi: 10.4314/tjpr.v18i4.3.

Salve V, Mishra R, Nandgude T. Development and optimization of a floating multi particulate drug delivery system for norfloxacin. Turk J Pharm Sci. 2019;16(3):326-34. doi: 10.4274/tjps.galenos.2018.99266. PMID 32454731.

Gupta VR, Mutalik S, Patel MM, Jani GK. Spherical crystals of celecoxib to improve solubility, dissolution rate and micromeritic properties. Acta Pharm. 2007;57(2):173-84. doi: 10.2478/v10007-007-0014-8, PMID 17507314.

Javadzadeh Y, Vazifehasl Z, Dizaj SM, Mokhtarpour M. Spherical crystallization of drugs. Intech Open. 2015;6:85-104. doi: 10.5772/59627.

Tambe A, Pandita N, Kharkar P, Sahu N. Encapsulation of boswellic acid with β- and hydroxypropyl-β-cyclodextrin: Synthesis, characterization, in vitro drug release and molecular modelling studies. J Mol Struct. 2018;1154:504-10. doi: 10.1016/j.molstruc.2017.10.061.

Panigrahy RN, Panda SK, Veerareddy PR. Formulation and in vitro evaluation of combined floating-bioadhesive tablets of imatinib mesylate. Int J Pharm Pharm Sci. 2017;9(10):27-33. doi: 10.22159/ijpps.2017v9i11.18894.

Kadam AT, Jadhav RL, Salunke PB, Kadam SS. Design and evaluation of modified chitosan-based in situ gel for ocular drug delivery. Int J Pharm Pharm Sci. 2017;9(10):87-91. doi: 10.22159/ijpps.2017v9i11.20938.

Chandrakala SV, Srinivasan S. Formulation and evaluation of mouth-dissolving film of an H1 antihistamine drug. Int J Curr Pharm Res. 2022;14(6):55-66. doi: 10.22159/ijcpr.2022v14i6.2062.

Mishra RV, Dhole SN. Multiparticulate floating drug delivery system of anagliptin: design and optimization for its efficacy in management of metabolic syndrome. Int J App Pharm. 2019;11(4):171-81. doi: 10.22159/ijap.2019v11i4.33249.

Soliman SM, Rashwan KO, Teaima MR, Jasti B, El-Nabarawi MA, Abdel-Haleem KM. Transethosomes as breakthrough tool for controlled transdermal delivery of dexketoprofen trometamol: design, fabrication, statistical optimization, in vitro, and ex vivo characterization. Int J App Pharm. 2022;14(6):51-7. doi: 10.22159/ijap.2022v14i6.45726.

Li H, Li M, Fu J, Ao H, Wang W, Wang X. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug Deliv. 2021;28(1):1226-36. doi: 10.1080/10717544.2021.1927244, PMID 34142631.

Najam-us-Saquib DS, Ahmed K, S-ur-rehman K. Effect of formulation and process variables on degradation products of lovastatin in tablet dosage form. Asian J Pharm Clin Res. 2015;8(1):131-3.

Riva A, Ronchi M, Petrangolini G, Bosisio S, Allegrini P. Improved oral absorption of quercetin from quercetin Phytosome®, a new delivery system based on food grade lecithin. Eur J Drug Metab Pharmacokinet. 2019;44(2):169-77. doi: 10.1007/s13318-018-0517-3, PMID: 30328058.

Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin-induced diabetic rat model. Drug Deliv Transl Res. 2012;2(2):112-23. doi: 10.1007/s13346-012-0063-5, PMID: 25786720.

Pryor WA, Stanley JP. Letter: a suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem. 1975;40(24):3615-7. doi: 10.1021/jo00912a038, PMID: 1185332.

Mensor LL, Menezes FS, Leitaceao GG, Reis AS, Dos Santos TC, Coube CS. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res. 2001;15(2):127-30. doi: 10.1002/ptr.687, PMID: 11268111.

Sorathia KR. Sustained release spherical agglomerates of tiaprofenic acid prepared by quasi-emulsion solvent diffusion method. Asian J Pharm. 2016;10(04):700-10. doi: 10.22377/ajp.v10i04.912.

Ozyazici M, Sevgi F, Pekcetin C, Sarpas B, Sayin S. Sustained release spherical agglomerates of polymethacrylates containing mefenamic acid: in vitro release, micromeritic properties and histological studies. Pharm Dev Technol. 2012;17(4):483-93483-893. doi: 10.3109/10837450.2010.550621, PMID: 21284557.

Published

07-05-2023

How to Cite

MISHRA, R., KULKARNI, S., & AHER, A. (2023). ONE POT DEVELOPMENT OF LIPID-BASED QUERCETIN SPHERICAL AGGLOMERATES FOR BIOAVAILABILITY ENHANCEMENT: IN VITRO AND IN VIVO ASSESSMENTS. International Journal of Applied Pharmaceutics, 15(3), 168–177. https://doi.org/10.22159/ijap.2023v15i3.47266

Issue

Section

Original Article(s)