FORMULATION AND EVALUATION OF EPIGALLOCATECHIN GALLATE AND BERBERINE-LOADED CHITOSAN NANOPARTICLES

Authors

  • GOPU VIJAYA SINDHURI Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India
  • GURUSAMY MARIAPPAN Department of Pharm Chemistry, St Mary's College of Pharmacy, Secunderabad 50002, Telangana, India https://orcid.org/0000-0002-0790-5545
  • SELVAMUTHUKUMAR SUBRAMANIAN Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2023v15i3.47410

Keywords:

Epigallocatechin gallate, Berberine, Nanoparticle and chitosan

Abstract

Objective: The current work aimed to prepare and characterize epigallocatechin gallate (EGCG)+berberine-loaded chitosan nanoparticle (EBNP).

Methods: The ionic gelation method was adopted. A batch of 17 nanoformulations was prepared by using chitosan as a natural biodegradable polymer and EGCG+berberine as active drug content and characterised.

Results: The SEM data proved that the chitosan-based nanoparticles were formed successfully with a spherical shape at 272 nm along with PDI 0.346. The FT-IR spectra confirmed that no drug-polymer interaction was observed. The DSC data proved that the formation of nanoparticles due to the presence of endothermic sharp melting points at 246 °C and 332 °C for EGCG and berberine in the pure form of the drug, whereas the same is absent in nanoformulation. The optimized formulation showed a percentage entrapment efficiency (% EE) for EGCG is  83.91 % and berberine at 90.62%, ZP of the nanoparticle is 11 mV.

Conclusion: This study demonstrated that box–behnken designs can optimize the formulation and the process variables to achieve favorable responses. Hence, it can be concluded that the best-optimized nanoparticle formation was confirmed and characterized.

Downloads

Download data is not yet available.

References

Mohanraj V, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006;5:561-73.

Freitas Jr RA. Nanotechnology, nanomedicine and nanosurgery. Int J Surg. 2005;3(4):243-46. doi: 10.1016/j.ijsu.2005.10.007.

Yih TC, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J Cell Biochem. 2006;97(6):1184-90. doi: 10.1002/jcb.20796.

Roque L, Castro R, Molpeceres R, Viana RS, Roberto A, Reis P. Bio adhesive polymeric nanoparticles as strategy to improve the treatment of yeast infections in oral cavity in vitro and ex-vivo studies. Eur Polym J. 2018;104:19-31.

Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64-70. doi: 10.1016/j.jsps.2017.10.012, PMID 29379334.

Vandervoort J, Ludwig A. Ocular drug delivery-nanomedicine applications. Nano Med. 2007;2:11-21.

Jianghua L, Chao C, Jiarui L, Jun L, Jia L, Tiantian S. Chitosan-based nanomaterials for drug delivery. Molecules. 2018;23:1-26.

Lehr CM, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm. 1992;78:43-8.

He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. International Journal of Pharmaceutics. 1998;166(1):75-88. doi: 10.1016/S0378-5173(98)00027-1.

Grenha A. Chitosan nanoparticles: a survey of preparation methods. J Drug Target. 2012;20(4):291-300. doi: 10.3109/1061186X.2011.654121, PMID 22296336.

Wang J, Byrne JD, Napier ME, Desimone JM. More effective nanomedicines through particle design. Small. 2011;7(14):1919-31. doi: 10.1002/smll.201100442, PMID 21695781.

Alonso MJ, Calvo P, Remunan Lopez C, Vila JJL. Novel hydrophilic chitosan polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1998;63:125-32.

Lu JJ, Bao JL, Chen JL, Huang M, Wang YT. Evidence-based complementary and alternative medicine. Nat Lib Med. 2012:1-12.

Zhang C, Sheng J, Li G, Zhao L, Wang Y, Yang W. Effects of berberine and its derivatives on cancer: a systems pharmacology review. Front Pharmacol. 2019;10:1461. doi: 10.3389/fphar.2019.01461. PMID 32009943.

Kumar GS. RNA targeting by small molecules-binding of protoberberine, benzo phenanthridine and aristolochia alkaloids to various RNA structures. J Bio Sci. 2012;37:539-52.

Xiao N, Chen S, Ma Y, Qiu J, Tan JH, Ou TM. Interaction of berberine derivative with protein POT1 affect telomere function in cancer cells. Biochem Biophys Res Commun. 2012;419(3):567-72. doi: 10.1016/j.bbrc.2012.02.063, PMID 22369941.

Moradzadeh M, Hosseini A, Erfanian S, Rezaei H. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and telomerase. Pharmacol Rep. 2017;69:924-28.

Nagle DG, Ferreira D, Zhou YD. Epigallocatechin3-gallate (EGCG)-chemical and biomedical perspectives. Phytochem. 2006;67:1849-55.

Nakagawa K, Miyazawa T. Absorption and distribution of tea catechin, (-)-epigallocatechin-3-gallate, in the rat. J Nutr Sci Vitaminol (Tokyo). 1997;43(6):679-84. doi: 10.3177/jnsv.43.679, PMID 9530620.

Nanjo F, Mori M, Goto K, Hara Y. Radical scavenging activity of tea catechins and their related compounds. Biosci Biotechnol Biochem. 1999;63(9):1621-23. doi: 10.1271/bbb.63.1621, PMID 10610125.

Akila RM, Maria Shaji D. Ginger loaded chitosan nanoparticles for the management of 3-nitropropionic acid-induced Huntington’s disease-like symptoms in male wistar rats. Int J Pharm Pharm Sci. 2021;14(1):28-36. doi: 10.22159/ijpps.2022v14i1.42894.

El-Assal MI, Samuel D. Optimization of rivastigmine chitosan nanoparticles for neurodegenerative alzheimer-in vitro and ex vivo characterizations. Int J Pharm Pharm Sci. 2022;14(1):17-27.

Trinayan D, Das MK, Das S, Das P, Ronibala Singha L. Box-behnken design approach to develop nano-vesicular herbal gel for the management of skin cancer in an experimental animal model. Int J Appl Pharm. 2022;14(6):148-66.

Joysa Ruby J, Pandey VP. Chitosan nanoparticles as a nasal drug delivery for memantine hydrochloride. Int J Pharm Pharm Sci. 2014;7(1):34-7.

E Elkholi I. Evaluation of anti-cancer potential of capsaicin-loaded trimethyl chitosan-based nanoparticles in HepG2 hepatocarcinoma cells. J Nanomed Nanotechnol 2014;5:6. doi: 10.4172/2157-7439.1000240.

Anbarasan B, Vennya V, Menon VA, Ramprabhu. Optimization of the formulation and in vitro evaluation of chloroquine-loaded chitosan nanoparticles using ionic gelation method. J Chem Pharm Sci. 2013;6:407-12.

Mali S, Oza N. Central composite design for formulation and optimization of long-acting injectable (LAI) microspheres of paliperidone palmitate. Int J Appl Pharm. 2021;13(5):87-98.

Manimekalai P, Manavalan R. Molecular docking studies of ceftriaxone sodium with apoptosis protein in colorectal cancer. Int J Res Pharm SIC. 2014;5:250-5.

Published

07-05-2023

How to Cite

SINDHURI, G. V., MARIAPPAN, G., & SUBRAMANIAN, S. (2023). FORMULATION AND EVALUATION OF EPIGALLOCATECHIN GALLATE AND BERBERINE-LOADED CHITOSAN NANOPARTICLES. International Journal of Applied Pharmaceutics, 15(3), 178–189. https://doi.org/10.22159/ijap.2023v15i3.47410

Issue

Section

Original Article(s)