FABRICATION AND DEVELOPMENT OF DISSOLVING MICRONEEDLE PATCH OF BUTORPHANOL TARTRATE

Authors

  • AMAN TIWARI Industrial Pharmacy Research Lab, Department of Pharmacy, Shri G. S. Institute of Technology and Science, 23, Park Road Indore 452003 (M. P), India
  • SHUBHAM SHARMA Industrial Pharmacy Research Lab, Department of Pharmacy, Shri G. S. Institute of Technology and Science, 23, Park Road Indore 452003 (M. P), India
  • PRAKASH KUMAR SONI Industrial Pharmacy Research Lab, Department of Pharmacy, Shri G. S. Institute of Technology and Science, 23, Park Road Indore 452003 (M. P), India
  • SURESH KUMAR PASWAN Industrial Pharmacy Research Lab, Department of Pharmacy, Shri G. S. Institute of Technology and Science, 23, Park Road Indore 452003 (M. P), India https://orcid.org/0000-0002-0030-0914

DOI:

https://doi.org/10.22159/ijap.2023v15i3.47411

Keywords:

Butorphanol tartrate, Dissolving microneedles, Lapox resin mould, Mould casting, Axial fractured force, Box-Behnken design, Post-operative pain

Abstract

Objective: Butorphanol is a commonly used medication for the management of postoperative pain and suffers low bioavailability and high first-pass metabolism. The objective of the current studies was to develop a butorphanol tartrate-loaded dissolving microneedle patch to overcome the limitation of first-pass metabolism without causing any discomfort to the patient.

Methods: Butorphanol tartrate-loaded microneedle patch was prepared using Lapox resin micro-molds. The microneedle patch was optimized using the box-Behnken design and the quantity of PVA, HPMC K4M, and HPMC K15M was optimized and evaluated for fractured axial force, microscopic evaluation, in vitro drug permeation studies, and ex-vivo permeation experiments.

Results: The developed microneedle patch meets all the evaluation parameters within the desired range. The height and tip diameter of the microneedles were found to be 700 µm to 800 µm and 60 µm to 61 µm. An axial fractured force of the optimized microneedle patch was found to be 189.67 N, suitable for penetrating the stratum corneum. The in vitro cumulative % drug permeated showed the permeation of the drug for 8 h with a total of 89.12 %, which shows the permeation of the drug occurred in a controlled manner.

Conclusion: Butorphanol tartrate-loaded microneedle patch was successfully developed and the results concluded that the microneedles were hard enough to pass the stratum corneum and release the drug into the systemic circulation without reaching the pain receptors; further, the release study suggested that the drug was released for a prolonged period eliminating the problem of first-pass effect and frequent administration.

Downloads

Download data is not yet available.

Author Biographies

AMAN TIWARI, Industrial Pharmacy Research Lab, Department of Pharmacy, Shri G. S. Institute of Technology and Science, 23, Park Road Indore 452003 (M. P), India

 

 

SHUBHAM SHARMA, Industrial Pharmacy Research Lab, Department of Pharmacy, Shri G. S. Institute of Technology and Science, 23, Park Road Indore 452003 (M. P), India

 

 

PRAKASH KUMAR SONI, Industrial Pharmacy Research Lab, Department of Pharmacy, Shri G. S. Institute of Technology and Science, 23, Park Road Indore 452003 (M. P), India

 

 

References

Mazda Y, Jadin S, Kahn JS. Postoperative pain management. Can Journ Gen Int Med 2021;16(SP1):5-17. doi: 10.22374/cjgim.v16iSP1.529.

Katz J, Jackson M, Kavanagh BP, Sandler AN. Acute pain after thoracic surgery predicts long-term post-thoracotomy pain. Clin J Pain. 1996 Mar;12(1):50-5. doi: 10.1097/00002508-199603000-00009, PMID 8722735.

Sharrock NE, Cazan MG, Hargett MJL, Williams Russo P, Wilson PD. Changes in mortality after total hip and knee arthroplasty over a ten-year period. Anesth Analg. 1995;80(2):242-8. doi: 10.1097/00000539-199502000-00008, PMID 7818108.

McQuay H. Opioids in pain management. Lancet. 1999;353(9171):2229-32. doi: 10.1016/S0140-6736(99)03528-X, PMID 10393001.

Philip BK, Reese PR, Burch SP. The economic impact of opioids on postoperative pain management. J Clin Anesth. 2002;14(5):354-64. doi: 10.1016/S0952-8180(02)00372-0, PMID 12208440.

Dobkin AB, Eamkaow S, Caruso FS. Butorphanol and pentazocine in patients with severe postoperative pain. Clin Pharmacol Ther. 1975;18(5 Pt 1):547-53. doi: 10.1002/cpt1975185part1547, PMID 1102232.

Benson HA. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv. 2005;2(1):23-33. doi: 10.2174/1567201052772915, PMID 16305405.

Chandrakala V, Chandrakala V, Srinivasan S. An overview: recent development in transdermal drug delivery. Int J Pharm Pharm Sci. 2022;14(10):1-9. doi: 10.22159/ijpps.2022v14i10.45471.

Coulman SA, Anstey A, Gateley C, Morrissey A, McLoughlin P, Allender C. Microneedle mediated delivery of nanoparticles into human skin. Int J Pharm. 2009;366(1-2):190-200. doi: 10.1016/j.ijpharm.2008.08.040, PMID 18812218.

Milewski M, Brogden NK, Stinchcomb AL. Current aspects of formulation efforts and pore lifetime related to microneedle treatment of skin. Expert Opin Drug Deliv. 2010;7(5):617-29. doi: 10.1517/17425241003663228, PMID 20205604.

Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261-8. doi: 10.1038/nbt.1504, PMID 18997767.

Donnelly RF, Singh TRR, Tunney MM, Morrow DI, McCarron PA, O’Mahony C. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009;26(11):2513-22. doi: 10.1007/s11095-009-9967-2, PMID 19756972.

Anjani QK, Permana AD, Carcamo Martinez A, Dominguez Robles J, Tekko IA, Larraneta E. Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. Eur J Pharm Biopharm. 2021;158:294-312. doi: 10.1016/j.ejpb.2020.12.003. PMID 33309844.

Carcamo Martinez A, Mallon B, Anjani QK, Dominguez Robles J, Utomo E, Vora LK. Enhancing intradermal delivery of tofacitinib citrate: comparison between powder-loaded hollow microneedle arrays and dissolving microneedle arrays. Int J Pharm. 2021;593:120152. doi: 10.1016/ j.ijpharm.2020.120152. PMID 33301867.

Quinn HL, Kearney MC, Courtenay AJ, McCrudden MT, Donnelly RF. The role of microneedles for drug and vaccine delivery. Expert Opin Drug Deliv. 2014;11(11):1769-80. doi: 10.1517/17425247.2014.938635, PMID 25020088.

Spreen WR, Margolis DA, Pottage Jr JC. Long-acting injectable antiretrovirals for HIV treatment and prevention. Curr Opin HIV AIDS. 2013;8(6):565-71. doi: 10.1097/COH.0000000000000002, PMID 24100877.

Manoj VR, Manoj H. Review on transdermal microneedle-based drug delivery. Asian J Pharm Clin Res. 2019;12(1):18-29. doi: 10.22159/ajpcr.2019.v12i1.27434.

Vora LK, Donnelly RF, Larraneta E, Gonzalez Vazquez P, Thakur RRS, Vavia PR. Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: proof of concept. J Control Release. 2017;265:93-101. doi: 10.1016/j.jconrel.2017.10.005. PMID 29037785.

Vora LK, Moffatt K, Tekko IA, Paredes AJ, Volpe Zanutto F, Mishra D. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm. 2021;159:44-76. doi: 10.1016/j.ejpb.2020.12.006. PMID 33359666.

Wu X, Chen Y, Gui S, Wu X, Chen L, Cao Y. Sinomenine hydrochloride-loaded dissolving microneedles enhanced its absorption in rabbits. Pharm Dev Technol. 2016;21(7):787-93. doi: 10.3109/10837450.2015.1055766, PMID 26122959.

Amodwala S, Kumar P, Thakkar HP. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient-friendly approach to manage arthritis. Eur J Pharm Sci. 2017;104:114-23. doi: 10.1016/j.ejps.2017.04.001. PMID 28385631.

Shaji J, Shah A. Optimization of tenoxicam loaded niosomes using quadratic design. Int J Curr Pharm. 2016;8(1):62-7.

Kolli CS, Banga AK. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res. 2008;25(1):104-13. doi: 10.1007/s11095-007-9350-0, PMID 17597381.

Ferreira PG, Noronha L, Teixeira R, Vieira I, Borba Santos LP, Viçosa A. Investigation of a microemulsion containing clotrimazole and itraconazole for transdermal delivery for the treatment of sporotrichosis. J Pharm Sci. 2020;109(2):1026-34. doi: 10.1016/j.xphs.2019.10.009. PMID 31604084.

Klang V, Schwarz JC, Lenobel B, Nadj M, Aubock J, Wolzt M. In vitro vs in vivo tape stripping: validation of the porcine ear model and penetration assessment of novel sucrose stearate emulsions. Eur J Pharm Biopharm. 2012;80(3):604-14. doi: 10.1016/j.ejpb.2011.11.009. PMID 22123494.

Chu LY, Choi SO, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci. 2010;99(10):4228-38. doi: 10.1002/jps.22140, PMID 20737630.

Patel DP, Setty CM, Mistry GN, Patel SL, Patel TJ, Mistry PC. Development and evaluation of ethyl cellulose-based transdermal films of furosemide for improved in vitro skin permeation. AAPS PharmSciTech. 2009;10(2):437-42. doi: 10.1208/s12249-009-9224-3, PMID 19381831.

Ferreira SL, Bruns RE, Ferreira HS, Matos GD, David JM, Brandao GC. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597(2):179-86. doi: 10.1016/j.aca.2007.07.011, PMID 17683728.

Ortiz MC, Herrero A, Sanllorente S, Reguera C. Methodology of multicriteria optimization in chemical analysis some applications in stripping voltammetry. Talanta. 2005;65(1):246-54. doi: 10.1016/j.talanta.2004.06.031, PMID 18969791.

Neufeld L, Bianco Peled H. Designing a biocompatible hydrogel for the delivery of mesalamine. Int J Pharm. 2015;491(1-2):170-9. doi: 10.1016/j.ijpharm.2015.06.026, PMID 26116013.

Zhu DD, Chen BZ, He MC, Guo XD. Structural optimization of rapidly separating microneedles for efficient drug delivery. J Ind Eng Chem. 2017;51:178-84. doi: 10.1016/j.jiec.2017.02.030.

He J, Zhang Z, Zheng X, Li L, Qi J, Wu W. Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride. Pharmaceutics. 2021;13(4). doi: 10.3390/pharmaceutics13040579, PMID 33921712.

Rojekar S, Vora LK, Tekko IA, Volpe Zanutto F, McCarthy HO, Vavia PR. Etravirine-loaded dissolving microneedle arrays for long-acting delivery. Eur J Pharm Biopharm. 2021;165:41-51. doi: 10.1016/j.ejpb.2021.04.024, PMID 33971273.

Zulcaif N, Zafar N, Mahmood A, Sarfraz RM, Elaissari A. Simvastatin loaded dissolvable microneedle patches with improved pharmacokinetic performance. Micromachines. 2022;13(8):1304. doi: 10.3390/mi13081304, PMID 36014226.

Akhtar N. Microneedles: an innovative approach to transdermal delivery-a review. Int J Pharm Pharm Sci. 2014;6(4):18-25.

Laniesse D, Smith DA, Knych HK, Mosley C, Guzman DS-M, Beaufrere H. In vitro characterization of a formulation of butorphanol tartrate in a poloxamer 407 base intended for use as a parenterally administered slow-release analgesic agent. Am J Vet Res. 2017;78(6):677-87. doi: 10.2460/ajvr.78.6.677, PMID 28541144.

Noguchi J, Hatanaka E, Kurita H, Fudoji R, Michinaka Y, Inventors. Google patents, assignee. Patch US. 2019;10(307):381 B2.

Sanz MG, Sellon DC, Cary JA, Hines MT, Farnsworth KD. Analgesic effects of butorphanol tartrate and phenylbutazone administered alone and in combination in young horses undergoing routine castration. J Am Vet Med Assoc. 2009;235(10):1194-203. doi: 10.2460/javma.235.10.1194, PMID 19912042.

Svozil M, Dolezal P, Hrabalek A, Mericka P. In vitro studies on transdermal permeation of butorphanol. Drug Dev Ind Pharm. 2007;33(5):559-67. doi: 10.1080/03639040601128639, PMID 17520448.

Published

07-05-2023

How to Cite

TIWARI, A., SHARMA, S., SONI, P. K., & PASWAN, S. K. (2023). FABRICATION AND DEVELOPMENT OF DISSOLVING MICRONEEDLE PATCH OF BUTORPHANOL TARTRATE. International Journal of Applied Pharmaceutics, 15(3), 261–271. https://doi.org/10.22159/ijap.2023v15i3.47411

Issue

Section

Original Article(s)