HR-LCMS-BASED METABOLITE PROFILING, AND ANTI-COLAGENASE PROPERTIES OF ETHANOLIC EXTRACT OF PIDADA MERAH: COMPUTATIONAL AND IN VITRO STUDY
DOI:
https://doi.org/10.22159/ijap.2023.v15s1.47504Keywords:
Anti-collagenase, In silico, In vitro, docking molecular, Pidada merahAbstract
Objective: Extract of pidada merah (Sonneratia caseolaris) leaves has very strong antioxidant activity and has potential as anti-aging. This study aimed to determine the anti-collagenase activity in silico and in vitro. Molecular docking includes exploring proteins or nucleotides, modeling 3D structures, and calculating bond energies. Collagenases are enzymes that can hydrolyze native collagen into fragment collagen peptides.
Methods: Investigation of in silico docking activity for collagenase receptors (966C). We performed metabolomics analysis through HR-LCMS on the extract pidada merah. To explore the use value of anti-collagenase, we analyzed the molecular docking of metabolites profiling pidada merah. In vitro study used a collagenase assay kit.
Results: Metabolite profiling on the HR-LCMS from Pidada Merah extract are A (AL_8810), B (NP_001596), C (NP_018716) and D (NP_021797). The anti-collagenase test showed the IC50 value = 26.74±0.40 ppm, which is the very strong category. NP_018716 has the lowest binding energy value with the target protein, which is -6.0, and binds to THR241 (2.24Å) and SER239 (3.35Å) and is the best compound according to calculations.
Conclusion: The results of this study indicate that the Extract Pidada merah has the Potential to be developed as a new drug for antiaging.
Downloads
References
Kuspradini H, Kusuma IW, Bang TH, Yamashita S, Katakura Y, Shimizu K Arung. Effects of isolated compound from Sonneratia caseolaris leaf: a validation of traditional utilization by melanin biosynthesis and antioxidant assays. J Appl Pharm Sci. 2015;5(10):39-43.
Rani PU, Sandhyarani K, Vadlapudi V, Sreedhar B. Bioefficacy of a mangrove plant, Sonneratia caseolaris and a mangrove associate plant, Hibiscus tiliaceus against certain agricultural and stored product pests. J Biopest. 2015;8(2):98-106.
Ghani A. Medicinal plants of Bangladesh with chemical constituents and uses. Second edi. Dhaka: Asiatic Society of Bangladesh; 1998.
Das SK, Samantaray D, Patra JK, Samanta L, Thatoi H. Antidiabetic potential of mangrove plants: a review. Front Life Sci. 2016;9(1):75-88. doi: 10.1080/21553769.2015.1091386.
Varghese J, Belzik N, Nisha A, Remi S, Silvipriya K. Pharmacognostical and phytochemical studies of a mangrove (Sonneratia caseolaris L.) from Kochi of Kerala State in India. J Pharm Res. 2010;3(11):2625-7.
Bandaranayake WM. Bioactive compounds and chemical constituents of Mangrove plants. Wetlands Ecology and Management. 2002;10(6):421-52. doi: 10.1023/A:1021397624349.
Buatong J, Phongpaichit S, Rukachaisirikul V, Sakayaroj J. Antimicrobial activity of crude extracts from mangrove fungal endophytes. World J Microbiol Biotechnol. 2011;27(12):3005-8. doi: 10.1007/s11274-011-0765-8.
Simlai A, Rai A, Mishra S, Mukherjee K, Roy A. Antimicrobial and antioxidative activities in the bark extracts of Sonneratia caseolaris, a mangrove plant. Excli J. 2014;13:997-1010. PMID 26417316.
Sadhu SK, Ahmed F, Ohtsuki T, Ishibashi M. Flavonoids from sonneratia caseolaris. J Nat Med. 2006;60(3):264-5. doi: 10.1007/s11418-006-0029-3, PMID 29435876.
Gemperline E, Keller C, Li L. Mass spectrometry in plant-omics. Anal Chem. 2016;88(7):3422-34. doi: 10.1021/acs.analchem.5b02938, PMID 26889688.
Worley B, Powers R. Multivariate analysis in metabolomics. Curr Metabolomics. 2013;1(1):92-107. doi: 10.2174/2213235X11301010092, PMID 26078916.
Syamsul ES, Umar S, Wahyuni FS, Martien R, Hamidi D. Anti-aging activity, in silico modeling and molecular docking from sonneratia caseolaris. Open Access Maced J Med Sci. 2022;10(A):1471-7. doi: 10.3889/oamjms.2022.10558.
Jariyah J, Widjanarko SB, Yunianta Y, Estiasih T. Phytochemical and acute toxicity studies of ethanol extract from Pedada (Sonneratia caseolaris) fruit flour (PFF). International Journal on Advanced Science, Engineering and Information Technology 2015;5(2):95. doi: 10.18517/ijaseit.5.2.485.
Jariyah AL, Widjanarko S, Estiasih T, Yuwono S, Yunianta. Hypocholesterolemic effect of Pedoda (Sonneratia caseolaris) fruit flour in wistar rats. Int J Pharm Tech Res. 2013;5(4):1619-27.
Wu SB, Wen Y, Li X W, Zhao Y, Zhao Z, Hu JF. Chemical constituents from the fruits of Sonneratia caseolaris and onneratia ovata (Sonneratiaceae). Biochemical Systematics and Ecology. 2009;37:1-5.
Syamsul ES, Supomo, Jubaidah S, Wijaya H, Lestari D, Poddar S. Antioxidant activity test of pidada merah leaves (Sonneratia caseolaris L.) using ABTS method (2,2-azinobis-(3-ethylbenzothiazolin)-6-sulfonicacid). Research Journal of Pharmacy and Technology. 2022;15(9):3957-1. doi: 10.52711/0974-360X.2022.00663.
Cavasotto CN. In silico drug discovery and design: theory, methods, challenges, and applications. CRC Press; 2015.
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449-61. doi: 10.1517/17460441.2015.1032936, PMID 25835573.
Magalhaes LM, Segundo MA, Reis S, Lima JLFC. Automatic method for determination of total antioxidant capacity using the 2,2-diphenyl-1-picrylhydrazyl assay. Anal Chim Acta. 2006;558(1-2):310-8. doi: 10.1016/j.aca.2005.11.013.
Sliwoski GR, Meiler J, Lowe EW. Computational methods in drug discovery prediction of protein structure and ensembles from limited experimental data View project antibody modeling, antibody design and antigen-antibody interactions view project. Comp Methods Drug Discov. 2014;66(1):334-95.
Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127. doi: 10.1155/2016/3565127, PMID 27247702.
Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci. 2008;30(2):87-95. doi: 10.1111/j.1468-2494.2007.00415.x, PMID 18377617.
Tanigawa T, Kanazawa S, Ichibori R, Fujiwara T, Magome T, Shingaki K. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis. BMC Complement Altern Med. 2014;14(1):133. doi: 10.1186/1472-6882-14-133, PMID 24712558.
Tsai ML, Huang HP, Hsu JD, Lai YR, Hsiao YP, Lu FJ. Topical N-acetylcysteine accelerates wound healing in vitro and in vivo via the PKC/Stat3 pathway. Int J Mol Sci. 2014;15(5):7563-78. doi: 10.3390/ijms15057563, PMID 24798751.
Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1-73. doi: 10.1016/bs.pmbts.2017.02.005. PMID 28413025.
Ghimeray AK, Jung US, Lee HY, Kim YH, Ryu EK, Chang MS. In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing punica granatum, ginkgo biloba, ficus carica, and morus alba fruits extract. Clin Cosmet Investig Dermatol. 2015;8:389-96. doi: 10.2147/CCID.S80906. PMID 26203268.
Fisher GJ, Kang S, Varani J, Bata Csorgo Z, Wan Y, Datta S. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462-70. doi: 10.1001/archderm.138.11.1462, PMID 12437452.
Ricciarelli R, Maroni P, Ozer N, Zingg JM, Azzi A. Age-dependent increase of collagenase expression can be reduced by alpha-tocopherol via protein kinase C inhibition. Free Radic Biol Med. 1999;27(7-8):729-37. doi: 10.1016/s0891-5849(99)00007-6, PMID 10515576.
Published
How to Cite
Issue
Section
Copyright (c) 2023 EKA SISWANTO SYAMSUL, SALMAN UMAR, FATMA SRI WAHYUNI, RONNY MARTIEN, DWI LESTARI, DACHRIYANUS HAMIDI
This work is licensed under a Creative Commons Attribution 4.0 International License.