NANOTHERANOSTICS IN CARDIOVASCULAR DISEASES: A NOVEL TOOL

Authors

  • IMRANKHAN NIZAM Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0003-0483-7927
  • KALAISELVI AASAITHAMBI Divison of Biotechnology, School of Life Sciences (Off Site Campus), JSS Academy of Higher Education and Research, Mysuru, Karnataka, India https://orcid.org/0000-0001-9481-2111
  • ASHA SRINIVASAN Division of Nanoscience and Technology, School of Life Science, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
  • SARVANA BABU CHIDAMBARAM Department of Pharmacology, JSS College of Pharmacy, Mysore, Karnataka, India
  • PRAVEEN THAGGIKUPPE KRISHNAMURTHY Department of Pharmacology, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India
  • SUBBA RAO V. MADHUNAPANTULA Department of Biochemistry, JSS Medical College, Mysore, Karnataka, India https://orcid.org/0000-0001-6050-1323
  • RAJESH THIMMULAPPA Department of Biochemistry, JSS Medical College, Mysore, Karnataka, India
  • GOWTHAMARAJAN KUPPUSAMY Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0003-0483-7927

DOI:

https://doi.org/10.22159/ijap.2023v15i4.47521

Keywords:

Nanotheranostics, Cardiovascular diseases, Nanocarriers, Imaging

Abstract

The leading cause of mortality worldwide is cardiovascular disease (CVD). Myocardial infarction, ischemic heart disease, ischemic injury, damaged arteries, thrombosis, and atherosclerosis are among the heart and blood vessel issues referred to as CVD. The most prevalent cause of CVD is atherosclerosis, an inflammatory disease of the arterial blood wall. Because of the complexity of CVD, pathophysiology, diagnosis, and therapy remain vital issues. The inadequacies of current treatment and diagnostic methods have given rise to theranostic nanomaterials. "Theranostic nanomaterials" describes a chemical with dual uses, including therapeutic and diagnostic applications. Theranostic nanoparticle imaging contrast can be advantageous for computed tomography (C. T.), positron emission tomography (P. E. T.), and magnetic resonance imaging (M. R. I.).

Additionally, they can cure CVD by employing medication delivery by nanoparticles or photothermal ablation. This study reviews the prevalence of the most recent developments in theranostic nanomaterials for identifying and treating CVD following the order in which diseases advance. Theranostics techniques for CVD detection include M. R. I., CT, near-infrared spectroscopy (NIR), and fluorescence. There have also been discussions of other theranostic nanoparticle-based CVD therapeutic methods.

Downloads

Download data is not yet available.

References

Lopez EO, Ballard BD, Jan A. Cardiovascular disease. StatPearls; 2022.

Cardiovascular disease. Available from: https://www.nhs.uk/conditions/cardiovascular-disease/ [Last accessed on 11 Nov 2022]

Cardiovascular Disease. Cleveland Clinic. Available from: https://my.clevelandclinic.org/health/diseases/21493-cardiovascular-disease.

Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol. 2006;47(8):C7-C12. doi: 10.1016/j.jacc.2005.09.068.

Douglas G, Channon KM. The pathogenesis of atherosclerosis. Medicine. 2014;42(9):480-4. doi: 10.1016/j.mpmed.2014.06.011.

Bjorkegren JLM, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022;185(10):1630-45. doi: 10.1016/j.cell.2022.04.004, PMID 35504280.

Cardiovascular diseases. Who.int. Available from: https://www.who.int/health-topics/cardiovascular-diseases. [Last accessed on 11 Nov 2022]

Global health estimates: leading causes of death. Who.int. Available from: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death. [Last accessed on 11 Nov 2022]

Krasi G, Precone V, Paolacci S, Stuppia L, Nodari S, Romeo F. Genetics and pharmacogenetics in the diagnosis and therapy of cardiovascular diseases. Acta Biomed. 2019;90(10-S):7-19. doi: 10.23750/abm.v90i10-S.8748, PMID 31577248.

Mead TJ, Apte SS. ADAMTS proteins in human disorders. Matrix Biol. 2018;71-72:225-39. doi: 10.1016/j.matbio.2018.06.002, PMID 29885460.

Stanhewicz AE, Wenner MM, Stachenfeld NS. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am J Physiol Heart Circ Physiol. 2018;315(6):H1569-88. doi: 10.1152/ajpheart.00396.2018, PMID 30216121.

Vitale C, Miceli M, Rosano GMC. Gender-specific characteristics of atherosclerosis in menopausal women: risk factors, clinical course and strategies for prevention. Climacteric. 2007;10Suppl 2:16-20. doi: 10.1080/13697130701602712, PMID 17882667.

Csige I, Ujvarosy D, Szabo Z, Lorincz I, Paragh G, Harangi M. The impact of obesity on the cardiovascular system. J Diabetes Res. 2018;2018:3407306. doi: 10.1155/2018/3407306, PMID 30525052.

Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 2009;6(6):399-409. doi: 10.1038/nrcardio.2009.55, PMID 19399028.

Ding N, Sang Y, Chen J, Ballew SH, Kalbaugh CA, Salameh MJ. Cigarette smoking, smoking cessation, and long-term risk of 3 major atherosclerotic diseases. J Am Coll Cardiol. 2019;74(4):498-507. doi: 10.1016/j.jacc.2019.05.049, PMID 31345423.

Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34(3):509-15. doi: 10.1161/atvbaha.113.300156, PMID 24554606.

Liu R, Xu F, Ma Q, Zhou Y, Liu T. C-reactive protein level predicts cardiovascular risk in Chinese young female population. Oxid Med Cell Longev. 2021;2021:6538079. doi: 10.1155/2021/6538079, PMID 34900087.

Yousuf O, Mohanty BD, Martin SS, Joshi PH, Blaha MJ, Nasir K. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol. 2013;62(5):397-408. doi: 10.1016/j.jacc.2013.05.016, PMID 23727085.

Swastini DA, Wiryanthini IAD, Ariastuti NLP, Muliantara A. Atherosclerosis prediction with high sensitivity c-reactive protein (hs-CRP) and related risk factor in a patient with dyslipidemia. Open Access Maced J Med Sci. 2019;7(22):3887-90. doi: 10.3889/oamjms.2019.526, PMID 32127998.

Yeh ETH. High-sensitivity C-reactive protein as a risk assessment tool for cardiovascular disease. Clin Cardiol. 2005;28(9):408-12. doi: 10.1002/clc.4960280905, PMID 16250263.

Bergheanu SC, Bodde MC, Jukema JW. Pathophysiology and treatment of atherosclerosis: current view and future perspective on lipoprotein modification treatment. Neth Heart J. 2017;25(4):231-42. doi: 10.1007/s12471-017-0959-2, PMID 28194698.

Treatments for advanced atherosclerosis. WebMD. Available from: https://www.webmd.com/cholesterol-management/treatments-for-advanced-atherosclerosis. [Last accessed on 11 Nov 2022]

Arteriosclerosis/atherosclerosis; Mayo Clinic Org; 2022. Available from: https://www.mayoclinic.org/diseases-conditions/arteriosclerosis-atherosclerosis/diagnosis-treatment/drc-20350575. [Last accessed on 11 Nov 2022]

Drug-eluting stents: do they increase heart attack risk?. Mayo Clinic Publications; 2022. Available from: https://www.mayoclinic.org/diseases-conditions/coronary-artery-disease/in-depth/drug-eluting-stents/art-20044911. [Last accessed on 11 Nov 2022]

Siddhardha B, Parasuraman P. Theranostics application of nanomedicine in cancer detection and treatment. In: Nanomaterials for drug delivery and therapy. Elsevier; 2019. p. 59-89.

Jeelani S, Reddy RCJ, Maheswaran T, Asokan GS, Dany A, Anand B. Theranostics: a treasured tailor for tomorrow. J Pharm Bioallied Sci. 2014;6(Suppl 1):S6-8.

Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22(10):1879-903. doi: 10.1021/bc200151q, PMID 21830812.

Wu Y, Vazquez Prada KX, Liu Y, Whittaker AK, Zhang R, Ta HT. Recent advances in the development of theranostic nanoparticles for cardiovascular diseases. Nanotheranostics. 2021;5(4):499-514. doi: 10.7150/ntno.62730, PMID 34367883.

Jabeen F, Najam-ul-Haq M, Javeed R, Huck CW, Bonn GK. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules. 2014;19(12):20580-93. doi: 10.3390/molecules191220580, PMID 25501919.

Curry T, Kopelman R, Shilo M, Popovtzer R. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol Imaging. 2014;9(1):53-61. doi: 10.1002/cmmi.1563, PMID 24470294.

de Oliveira Goncalves K, da Silva MN, Sicchieri LB, de Oliveira Silva FR, de Matos RA, Courrol LC. Aminolevulinic acid with gold nanoparticles: a novel theranostic agent for atherosclerosis. Analyst. 2015;140(6):1974-80. doi: 10.1039/c4an02166e, PMID 25671550.

Pala R, Anju VT, Dyavaiah M, Busi S, Nauli SM. Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases. Int J Nanomedicine. 2020;15:3741-69. doi: 10.2147/IJN.S250872, PMID 32547026.

Pala R, Pattnaik S, Busi S, Nauli SM. Nanomaterials as novel cardiovascular theranostics. Pharmaceutics. 2021;13(3):348. doi: 10.3390/pharmaceutics13030348, PMID 33799932.

MacRitchie N, Di Francesco V, Ferreira MFMM, Guzik TJ, Decuzzi P, Maffia P. Nanoparticle theranostics in cardiovascular inflammation. Semin Immunol. 2021;56:(101536). doi: 10.1016/j.smim.2021.101536, PMID 34862118.

Nandwana V, Ryoo SR, Kanthala S, McMahon KM, Rink JS, Li Y. High-density lipoprotein-like magnetic nanostructures (HDL-MNS): theranostic agents for cardiovascular disease. Chem Mater. 2017;29(5):2276-82. doi: 10.1021/acs.chemmater.6b05357.

Oumzil K, Ramin MA, Lorenzato C, Hemadou A, Laroche J, Jacobin Valat MJ. Solid lipid nanoparticles for image-guided therapy of atherosclerosis. Bioconjug Chem. 2016;27(3):569-75. doi: 10.1021/acs.bioconjchem.5b00590, PMID 26751997.

Wu Y, Zhang R, Tran HDN, Kurniawan ND, Whittaker AK. Chitosan nano cocktails containing both ceria and superparamagnetic iron oxide nanoparticles for reactive oxygen species-related theranostics. ACS Appl Nano Mater 2021;4(4):3604–18.

Wu Y, Yang Y, Zhao W, Xu ZP, Little PJ, Whittaker AK. Novel iron oxide–cerium oxidecore–shell nanoparticles as a potential theranostic material for ROS-related inflammatory diseases. J Mater Chem B. 2018;6(30):4937-51. doi: 10.1039/C8TB00022K.

Lu KY, Lin PY, Chuang EY, Shih CM, Cheng TM, Lin TY. H 2 O 2-Depleting and O 2-generating selenium nanoparticles for fluorescence imaging and photodynamic treatment of proinflammatory-activated macrophages. ACS Appl Mater Interfaces. 2017;9(6):5158-72. doi: 10.1021/acsami.6b15515.

Yi BG, Park OK, Jeong MS, Kwon SH, Jung JI, Lee S. In vitro photodynamic effects of scavenger receptor targeted-photoactivatable nanoagents on activated macrophages. Int J Biol Macromol. 2017;97:181-9. doi: 10.1016/j.ijbiomac.2017.01.037, PMID 28082222.

Hou X, Lin H, Zhou X, Cheng Z, Li Y, Liu X. Novel dual ROS-sensitive and CD44 receptor targeting nanomicelles based on oligomeric hyaluronic acid for the efficient therapy of atherosclerosis. Carbohydr Polym. 2020;232:(115787). doi: 10.1016/j.carbpol.2019.115787, PMID 31952595.

Kosuge H, Sherlock SP, Kitagawa T, Dash R, Robinson JT, Dai H. Near-infrared imaging and photothermal ablation of vascular inflammation using single-walled carbon nanotubes. J Am Heart Assoc. 2012;1(6):e002568. doi: 10.1161/JAHA.112.002568, PMID 23316318.

Sun X, Li W, Zhang X, Qi M, Zhang Z, Zhang XE. In vivo targeting and imaging of atherosclerosis using multifunctional virus-like particles of simian virus 40. Nano Lett. 2016;16(10):6164-71. doi: 10.1021/acs.nanolett.6b02386, PMID 27622963.

Marrache S, Dhar S. Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc Natl Acad Sci USA. 2013;110(23):9445-50. doi: 10.1073/pnas.1301929110, PMID 23671083.

Shaikh SC, Saboo SG, Tandale PS, Memon FS, Tayade SD, Haque MA. Pharmaceutical and biopharmaceutical aspects of quantum dots-an overview. Int J App Pharm. 2021:44-53. doi: 10.22159/ijap.2021v13i5.41623.

Qin J, Peng Z, Li B, Ye K, Zhang Y, Yuan F. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages. Nanoscale. 2015;7(33):13991-4001. doi: 10.1039/c5nr02521d, PMID 26228112.

Qin J. PC216 gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages. J Vasc Surg. 2017;65(6):197S.

Gao W, Sun Y, Cai M, Zhao Y, Cao W, Liu Z. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat Commun. 2018;9(1):231. doi: 10.1038/s41467-017-02657-z, PMID 29335450.

Raikar PR, Dandagi M. Functionalized polymeric nanoparticles: a novel targeted approach for oncology care. Int J App Pharm. 2021:1-18. doi: 10.22159/ijap.2021v13i6.42714.

Published

07-07-2023

How to Cite

NIZAM, I., AASAITHAMBI, K., SRINIVASAN, A., CHIDAMBARAM, S. B., KRISHNAMURTHY, P. T., MADHUNAPANTULA, S. R. V., THIMMULAPPA, R., & KUPPUSAMY, G. (2023). NANOTHERANOSTICS IN CARDIOVASCULAR DISEASES: A NOVEL TOOL. International Journal of Applied Pharmaceutics, 15(4), 37–42. https://doi.org/10.22159/ijap.2023v15i4.47521

Issue

Section

Review Article(s)