APPLICATION OF PLACKETT-BURMAN AND BOX-BEHNKEN DESIGNS FOR SCREENING AND OPTIMIZATION OF ROTIGOTINE HCL AND RASAGILINE MESYLATE TRANSFERSOMES: A STATISTICAL APPROACH

Authors

  • SHIVANI PATEL Department of Pharmaceutics, Faculty of Pharmacy, Parul University, P. O Limda, Tal. Waghodia, Vadodara-391760, Gujarat, India https://orcid.org/0000-0001-8055-6022
  • LALIT LATA JHA School of Pharmacy, Parul University, P. O Limda, Tal. Waghodia, Vadodara-391760, Gujarat, India https://orcid.org/0000-0003-0919-3366

DOI:

https://doi.org/10.22159/ijap.2023v15i4.47674

Keywords:

Rotigotine HCL, Rasagiline mesylate, Plackett- Burman Design, Box-Behnken design, Transferosomes, Entrapment efficiency, Zeta potential

Abstract

Objective: The objective of this study was to optimize the transferosomal formulation containing Rotigotine HCL(RTG) and Rasagiline mesylate (RSM) and to identify the significant factors affecting particle size and entrapment efficiency.

Methods: The optimized batch was characterized using various techniques, such as TEM to confirm the shape of vesicles and FTIR analysis to check the compatibility of the formulation. The vesicle size of the transferosomes was determined using a zeta sizer. The entrapment efficiency of both drugs was also determined. In vitro drug permeation investigation was carried out from the optimized batch to determine the cumulative permeation rate after 24 h. The study also evaluated the deformability index of the transferosomes.

Results: The results showed that transferosomes were spherical particles with a uniform distribution and suitable for drug delivery. The vesicle size of the transferosomes was in the range of 54.05-167.98 nm and 66.02-184.04 nm for RTG and RSM transferosomes, respectively. The polydispersity index for RTG transferosomes was observed in the range of 0.242-0.508, the entrapment efficiency of RTG was 45.66-88.96% and RSM was found to be 57.6-92.57%. The in vitro drug permeation investigation from the optimized batch showed a cumulative permeation rate of 92.268% of RTG and 87.72% of RSM after 24 h.

Conclusion: The study findings suggest that transferosomes can be a promising drug delivery system for rotigotine HCL and rasagiline mesylate. The optimized batch showed high entrapment efficiency, good permeation rate, and optimal deformability, making it a suitable option for drug delivery.

Downloads

Download data is not yet available.

References

Giladi N, Asgharnejad M, Bauer L, Grieger F, Boroojerdi B. Rotigotine in combination with the MAO-B inhibitor selegiline in early Parkinson’s disease: A post hoc analysis. J Parkinsons Dis. 2016;6(2):401-11. doi: 10.3233/JPD-150758, PMID 27061066.

Elshoff JP, Cawello W, Andreas JO, Mathy FX, Braun M. An update on pharmacological, pharmacokinetic properties and drug–drug interactions of Rotigotine transdermal system in Parkinson’s disease and restless legs syndrome. Drugs. 2015;75(5):487-501. doi: 10.1007/s40265-015-0377-y, PMID 25795100.

Jiang DQ, Wang HK, Wang Y, Li MX, Jiang LL, Wang Y. Rasagiline combined with levodopa therapy versus levodopa monotherapy for patients with Parkinson’s disease: a systematic review. Neurol Sci. 2020;41(1):101-9. doi: 10.1007/s10072-019-04050-8. PMID 31446579.

Jalajakshi N, Chandrakala V, Srinivasan S. An overview: recent development in transdermal drug delivery. Int J Pharm Pharm Sci. 2022;14(10):1-9.

Chaurasiya P, Ganju E, Upmanyu N, Ray SK, Jain P. Transfersomes: a novel technique for transdermal drug delivery. J Drug Delivery Ther. 2019;9(1):279-85. doi: 10.22270/jddt.v9i1.2198.

Ezzat HM, Elnaggar YSR, Abdallah OY. Improved oral bioavailability of the anticancer drug catechin using chitosomes: design, in vitro appraisal and in vivo studies. Int J Pharm. 2019;565:488-98. doi: 10.1016/j.ijpharm.2019.05.034. PMID 31100382.

Chauhan P, Tyagi BK. Herbal novel drug delivery systems and transfersomes. J Drug Delivery Ther 2018;8(3):162-8. doi: 10.22270/jddt.v8i3.1772.

Moawad FA, Ali AA, Salem HF. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: preparation, in vitro and in vivo performance. Drug Deliv. 2017;24(1):252-60. doi: 10.1080/10717544.2016.1245369, PMID 28156169.

Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O’Neill FO. Surfactant effects on lipid-based vesicles properties. J Pharm Sci. 2018;107(5):1237-46. doi: 10.1016/j.xphs.2018.01.005, PMID 29336980.

Kumar A. Transferosome: a recent approach for transdermal drug delivery. J Drug Delivery Ther. 2023;8(5-s):100-4. doi: 10.22270/jddt.v8i5-s.1981.

Hjelmström P, Banke Nordbeck E, Tiberg F. Optimal dose of buprenorphine in opioid use disorder treatment: a review of pharmacodynamic and efficacy data. Drug Dev Ind Pharm. 2020;46(1):1-7. doi: 10.1080/03639045.2019.1706552. PMID 31914818.

Abraham P, Krupanidhi S, Rajeswara E, Indira M, Bobby M, Venkateswarulu TC. Plackett-Burman design for screening of process components and their effects on the production of lactase by newly isolated Bacillus sp. VUVD101 strain from Dairy effluent. Beni Suef Univ J Basic Appl Sci. 2018;7:543-6. doi: 10.1016/j.bjbas.2018.06.004.

Smith ZD, Keller JR, Bello M, Cordes NL, Welch CF, Torres JA. Plackett-Burman experimental design to facilitate syntactic foam development. J Appl Polym Sci. 2016;133(1). doi: 10.1002/app.42892.

Mueanmas C, Indum P. Application of Plackett-Burman design on screening the factors affecting torrefaction of palm kernel shell. IOP Conf Ser.: Earth Environ Sci. 2019;301(1):012030. doi: 10.1088/1755-1315/301/1/012030.

Ekpenyong MG, Antai SP, Asitok AD, Ekpo BO. Plackett-Burman design and response surface optimization of medium trace nutrients for glycolipopeptide biosurfactant production. Iran Biomed J. 2017;21(4):249-60. doi: 10.18869/ acadpub.ibj.21.4.249, PMID 28433004.

Sahu PK, Ramisetti NR, Cecchi T, Swain S, Patro CS, Panda J. An overview of experimental designs in HPLC method development and validation. J Pharm Biomed Anal. 2018;147:590-611. doi: 10.1016/j.jpba.2017.05.006. PMID 28579052.

Deka T, Das MK, Das S, Das P, Singha LR. Box-Behnken design approach to develop nano-vesicular herbal gel for the management of skin cancer in experimental animal model. Int J App Pharm. 2022;14(6):148-66. doi: 10.22159/ijap.2022v14i6.45867.

Tamilarasan N, Yasmin BM, Anitha P, Umme H, Cheng WH, Mohan S. Box-Behnken design: optimization of proanthocyanidin-loaded transferosomes as an effective therapeutic approach for osteoarthritis. Nanomaterials (Basel). 2022;12(17):2954. doi: 10.3390/nano12172954, PMID 36079990.

Jangdey MS, Gupta A, Saraf S, Saraf S. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation. Artif Cells Nanomed Biotechnol. 2017;45(7):1452-62. doi: 10.1080/21691401.2016.1247850, PMID 28050929.

Magdy I, Amna M, Makky A, Menna M. Formulation and characterization of ethosomes bearing vancomycin hydrochloride for transdermal delivery. Int J Pharm Pharm Sci. 2014;6(11):190-4.

Varia U, Joshi D, Jadeja M, Katariya H, Detholia K, Soni V. Development and evaluation of ultradeformable vesicles loaded transdermal film of boswellic acid. Futur J Pharm Sci. 2022;8(1):39. doi: 10.1186/s43094-022-00428-2.

Anitha P, Ramkanth S, Satyanarayana SV. QBD based design and characterization of proniosomal transdermal delivery of atenolol and glibenclamide combination: an innovative approach. Bull Fac Pharm Cairo Univ. 2021 Jan;59(1):11-26. doi: 10.54634/2090-9101.1021.

Ramkanth S, Anitha P, Gayathri R, Mohan S, Babu D. Formulation and design optimization of nano-transferosomes using pioglitazone and eprosartan mesylate for concomitant therapy against diabetes and hypertension. Eur J Pharm Sci. 2021;162:105811. doi: 10.1016/j.ejps.2021.105811, PMID 33757828.

Banu R, Gerding J, Franklin C, Sikazwe D, Horton W, Torok M. 4,5-Dimethoxy-2-nitrobenzohydrazides and 1-(1-Benzylpiperidin-4-yl)ethan-1-ones as potential antioxidant/cholinergic endowed small molecule leads. Sci Pharm. 2017;86(1):2. doi: 10.3390/scipharm86010002, PMID 29267246.

Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP. The role of resveratrol in cancer therapy. Int J Mol Sci. 2017;18(12):2589. doi: 10.3390/ijms18122589, PMID 29194365.

Mondal A, Bennett LL. Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage. Biomed Pharmacother. 2016;84:1906-14. doi: 10.1016/j.biopha.2016.10.096, PMID 27863838.

Zubiaur P, Matas M, Martin Vilchez S, Soria Chacartegui P, Villapalos Garcia G, Figueiredo Tor L. Polymorphism of drug transporters, rather than metabolizing enzymes, conditions the pharmacokinetics of rasagiline. Pharmaceutics. 2022;14(10):2001. doi: 10.3390/pharmaceutics14102001, PMID 36297437.

Ibrahim SS, Abo Elseoud OG, Mohamedy MH, Amer MM, Mohamed YY, Elmansy SA. Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways. Neuropharmacology. 2021;197:108738. doi: 10.1016/j.neuropharm.2021.108738, PMID 34339751.

Song X, Chen Z, Liu Y. MicroRNA-134 contributes to glucose-induced endothelial injury via targeting ARNT in human umbilical vein endothelial cells. Yonsei Med J. 2018;59(3):455-63. doi: 10.3349/ymj.2018.59.3.455.

Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm. 2007;332(1-2):1-16. doi: 10.1016/j.ijpharm.2006.12.005. PMID 17222523.

Zhou X, Zhang Z, Li Y, Hao Y, Li S, Wu C. Advances in liposomal drug delivery system decorated with cell-penetrating peptides for cancer treatment. Curr Pharm Des. 2017;23(3):302-11.

Sharma P, Garg S, Purewal TS. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for pulmonary drug delivery: a review. J Microencapsul. 2018;35(2):131-42.

Sarwa KK, Suresh PK, Yadav P. Development and evaluation of mucoadhesive microemulsion of terbinafine hydrochloride for the treatment of onychomycosis. J Microencapsul. 2017;34(1):22-33.

El-Sabawi D, Abu-Dahab R, Zalloum WA, Ijbara F, Hamdan II. The effect of ferrous ions, calcium ions and citric acid on absorption of ciprofloxacin across caco-2 cells: practical and structural approach. Drug Dev Ind Pharm. 2019;45(2):292-303. doi: 10.1080/03639045.2018.1539495. PMID 30348012.

Patel N, Desai R, Patel D. Preparation and evaluation of transfersomes containing rasagiline mesylate for transdermal delivery. J Drug Deliv Sci Technol. 2021;61:102116.

Published

07-07-2023

How to Cite

PATEL, S., & JHA, L. L. (2023). APPLICATION OF PLACKETT-BURMAN AND BOX-BEHNKEN DESIGNS FOR SCREENING AND OPTIMIZATION OF ROTIGOTINE HCL AND RASAGILINE MESYLATE TRANSFERSOMES: A STATISTICAL APPROACH. International Journal of Applied Pharmaceutics, 15(4), 238–245. https://doi.org/10.22159/ijap.2023v15i4.47674

Issue

Section

Original Article(s)