DEVELOPMENT OF NANO IN SITU GELS OF BEVACIZUMAB FOR THE TREATMENT OF OCULAR ANGIOGENESIS: IN VITRO ASSESSMENT OF ANTI-ANGIOGENESIS ACTIVITY AND MOLECULAR DOCKING ANALYSIS

Authors

  • SOUMYA NARAYANA Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Naringana-575023, Mangaluru, Karnataka, India https://orcid.org/0000-0002-1936-6542
  • MOHAMMED GULZAR AHMED Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Naringana-575023, Mangaluru, Karnataka, India
  • ARFA NASRINE https://orcid.org/0000-0001-7281-6904

DOI:

https://doi.org/10.22159/ijap.2023v15i4.47860

Keywords:

Nano in situ gel, Bevacizumab, Anti-angiogenic, Docking analysis, Ocular angiogenesis

Abstract

Objective: The present investigation aims to develop nano in situ gels of bevacizumab and evaluate their safety and efficacy.

Methods: Nanoparticles were designed using the desolvation and double emulsion solvent evaporation technique. The hen’s egg test: chorioallantoic membrane (HET-CAM) assay was adopted to evaluate the anti-angiogenesis and irritancy potential of prepared nano in situ gel. Computational docking study carried out using glide module of Schrodinger software.

Results: The FT-IR study showed no interaction between the components. The drug-loaded nanoparticle showed particle size in the range of 369±5.3 to 410±3.5, followed by PDI 0.41±0.1 to 0.73±0.1, and ζ–Potential-13±2.3 to-9±3.4. The entrapment efficiency of nanoparticles was found in between the range of 72.35±1.4 to 87.22±1.1, followed by loading efficiency of 8.81±0.3 to 12.78±0.7. The FE-SEM studies resulted in an irregular pattern of aggregated particles. The spherical shape of the particles was confirmed through the HR-TEM study. The nano in situ gel exhibited pH in the range of 7.2±0.2 to 7.3±0.1 followed by a viscosity of 325.2±8.7 to 498.7±5.8 mPa. s. CAM assays revealed the safety and anti-angiogenesis activity of the developed formulation. All different concentrations of in situ gels of bevacizumab showed a significant anti-angiogenic effect. The outcome of the molecular docking study revealed the well-binding capacity of bevacizumab with vascular endothelial growth factor (-7.325) and human serum albumin (-5.620) residues.

Conclusion: The above outcomes improved our perception regarding the anti-angiogenic activity and safety of nano-in situ gels of bevacizumab. Overall, these findings denoted that implementing the current idea in the therapy of ocular angiogenesis might be a promising platform for better treatment.

Downloads

Download data is not yet available.

References

Pories SE, Wulf GM. Evidence for the role of bevacizumab in the treatment of advanced metastatic breast cancer: a review. Breast Cancer (Dove Med Press). 2010 Jun 21;2:37-44. doi: 10.2147/bctt.s6511. PMID 24367165, PMCID PMC3846523.

Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities. Mediators Inflamm. 2013;2013:127170. doi: 10.1155/2013/127170, PMID 23983401, PMCID PMC3745966.

Steinmetz JD, Bourne RRA, Briant PS, Flaxman SR, Taylor HRB, Jonas JB. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Heal. 2021;9(2):e144-60. doi: 10.1016/S2214-109X(20)30489-7.

Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017 Dec;5(12):e1221-34. doi: 10.1016/S2214-109X(17)30393-5, PMID 29032195.

Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol. 2004 Jun;164(6):1875-82. doi: 10.1016/S0002-9440(10)63747-9, PMID 15161623, PMCID PMC1615763.

Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 1999 Sep;56(3):794-814. doi: 10.1046/j.1523-1755.1999.00610.x. PMID 10469350.

Siemerink MJ, Augustin AJ, Schlingemann RO. Mechanisms of ocular angiogenesis and its molecular mediators. Dev Ophthalmol. 2010;46:4-20. doi: 10.1159/000320006, PMID 20703029.

Narayana S, Ahmed MG, Gowda BHJ, Shetty PK, Nasrine A, Thriveni M. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: a comprehensive review. Futur J Pharm Sci. 2021;7(1):1-21.

Luis de Redin I, Boiero C, Martinez Oharriz MC, Agueros M, Ramos R, Penuelas I. Human serum albumin nanoparticles for ocular delivery of bevacizumab. Int J Pharm. 2018 Apr 25;541(1-2):214-23. doi: 10.1016/j.ijpharm.2018.02.003. PMID 29481946.

Colangelo AM, Bianco MR, Vitagliano L, Cavaliere C, Cirillo G, De Gioia L. A new nerve growth factor-mimetic peptide active on neuropathic pain in rats. J Neurosci. 2008 Mar 12;28(11):2698-709. doi: 10.1523/JNEUROSCI.5201-07.2008, PMID 18337399, PMCID PMC6670672.

Cao Y. Angiogenesis modulates adipogenesis and obesity. J Clin Invest. 2007 Sep;117(9):2362-8. doi: 10.1172/JCI32239, PMID 17786229, PMCID PMC1963348.

Ribatti D, Urbinati C, Nico B, Rusnati M, Roncali L, Presta M. Endogenous basic fibroblast growth factor is implicated in the vascularization of the chick embryo chorioallantoic membrane. Dev Biol. 1995 Jul;170(1):39-49. doi: 10.1006/dbio.1995.1193, PMID 7601314.

Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013 Jul;27(7):787-94. doi: 10.1038/eye.2013.107, PMID 23722722, PMCID PMC3709385.

Nguyen M, Shing Y, Folkman J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res. 1994 Jan;47(1):31-40. doi: 10.1006/mvre.1994.1003, PMID 7517489.

Narayana S, Gulzar Ahmed M, Nasrine A. Effect of nano-encapsulation using human serum albumin on anti-angiogenesis activity of bevacizumab to target corneal neovascularization: development, optimization and in vitro assessment. Mater Today Proc. 2022;68:93-104. doi: 10.1016/j.matpr.2022.06.179.

Reimondez Troitino S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015 Sep;95(B):279-93. doi: 10.1016/j.ejpb.2015.02.019. PMID 25725262.

Hani U, Osmani RAM, Yasmin S, Gowda BHJ, Ather H, Ansari MY. Novel drug delivery systems as an emerging platform for stomach cancer therapy. Pharmaceutics. 2022 Jul 29;14(8):14(8):1576. doi: 10.3390/pharmaceutics14081576, PMID 36015202.

Gowda BHJ, Ahmed MG, Chinnam S, Paul K, Ashrafuzzaman M, Chavali M. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol. 2022;71(Mar):103305. doi: 10.1016/j.jddst.2022.103305.

Ambikar RB, Bhosale AV. Original article development and characterization of diclofenac sodium loaded eudragit rs100 polymeric microsponge incorporated into in situ gel for ophthalmic drug delivery system. Int J Pharm Pharm Sci. 2021;13(9):63-9.

Dholakia M, Dave R, Thakkar V, Rana H, Gohel M, Patel N. Newer ophthalmic in situ gel of moxifloxacin hydrochloride: optimization using box Behnken statistical design. Int J Pharm Pharm Sci. 2018;10(12):5-13. doi: 10.22159/ijpps.2018v10i12.26979.

Jain N, Verma A. Preformulation studies of pilocarpine hydrochloride as niosomal gels for ocular drug delivery. Asian J Pharm Clin Res. 2020;13(6):149-55. doi: 10.22159/ajpcr.2020.v13i6.37523.

Paulsamy M, Ponnusamy C, Palanisami M, Nackeeran G, Paramasivam S, Sugumaran A. Nepafenac loaded silica nanoparticles dispersed in-situ gel systems: development and characterization. Int J Biol Macromol. 2018 Apr 15;110:336-45. doi: 10.1016/j.ijbiomac.2018.01.123. PMID 29408555.

Kumar D, Jain N, Gulati N, Nagaich U. Nanoparticles laden in situ gelling system for ocular drug targeting. J Adv Pharm Technol Res. 2013 Jan;4(1):9-17. doi: 10.4103/2231-4040.107495, PMID 23662277, PMCID PMC3645361.

Kandarova H, Letasiova S. Alternative methods in toxicology: pre-validated and validated methods. Interdiscip Toxicol. 2011 Sep;4(3):107-13. doi: 10.2478/v10102-011-0018-6, PMID 22058651, PMCID PMC3203912.

Cazedey ECL, Carvalho FC, Fiorentino FAM, Gremiao MPD, Salgado HRN. Corrositex®, BCOP and HET-CAM as alternative methods to animal experimentation. Braz J Pharm Sci. 2009;45(4):759-66. doi: 10.1590/S1984-82502009000400021.

Saurabh SS, Rathore KS, Ghosh S. Formulation and evaluation of cetirizine hydrochloride ph trigged in-situ ocular gel. Int J Appl Pharm. 2023;15(2):106-16.

Nowak Sliwinska P, Segura T, Iruela Arispe ML. The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis. 2014 Oct;17(4):779-804. doi: 10.1007/s10456-014-9440-7, PMID 25138280, PMCID PMC4583126.

Kundekova B, Macajova M, Meta M, Cavarga I, Bilcik B. Chorioallantoic membrane models of various avian species: differences and applications. Biology (Basel). 2021 Apr 6;10(4):301. doi: 10.3390/biology10040301, PMID 33917385, PMCID PMC8067367.

Shaikh MS, Kale MA. Formulation and molecular docking simulation study of luliconazole nanosuspension–based nanogel for transdermal drug delivery using modified polymer. Mater Today Chem. 2020;18:100364. doi: 10.1016/j.mtchem.2020.100364.

Rani KC, Parfati N, Aryani NLD, Winantari AN, Fitriani EW, Pradana AT. Development, evaluation, and molecular docking of oral dissolving film of atenolol. Pharmaceutics. 2021 Oct 19;13(10):1727. doi: 10.3390/pharmaceutics13101727, PMID 34684021, PMCID PMC8537485.

Mohamed JMM, Alqahtani A, Kumar TVA, Fatease AA, Alqahtani T, Krishnaraju V. Superfast synthesis of stabilized silver nanoparticles using aqueous allium sativum (garlic) extract and isoniazid hydrazide conjugates: molecular docking and in vitro characterizations. Molecules. 2021 Dec 24;27(1):110. doi: 10.3390/molecules27010110, PMID 35011342, PMCID PMC8746848.

Zhang XP, Sun JG, Yao J, Shan K, Liu BH, Yao MD. Effect of nanoencapsulation using poly (lactide-co-glycolide) (PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy. Biomed Pharmacother. 2018 Nov;107:1056-63. doi: 10.1016/j.biopha.2018.08.092. PMID 30257317.

Tao W, Zeng X, Liu T, Wang Z, Xiong Q, Ouyang C. Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater. 2013 Nov;9(11):8910-20. doi: 10.1016/j.actbio.2013.06.034. PMID 23816645.

Varshochian R, Riazi Esfahani M, Jeddi Tehrani M, Mahmoudi AR, Aghazadeh S, Mahbod M. Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J Biomed Mater Res A. 2015 Oct;103(10):3148-56. doi: 10.1002/jbm.a.35446. PMID 25773970.

Bummer PM. An FTRI study of the structure of human serum albumin adsorbed to polysulfone. International Journal of Pharmaceutics. 1996;132(1-2):143-51. doi: 10.1016/0378-5173(95)04344-6.

Tarhini M, Benlyamani I, Hamdani S, Agusti G, Fessi H, Greige Gerges H. Protein-based nanoparticle preparation via nanoprecipitation method. Materials (Basel). 2018 Mar 7;11(3):394. doi: 10.3390/ma11030394, PMID 29518919, PMCID PMC5872973.

Singh J, Chhabra G, Pathak K. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. Ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm. 2014;40(9):1223-32. doi: 10.3109/03639045.2013.814061, PMID 23837522.

Upadhayay P, Kumar M, Pathak K. Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: optimization, ocular irritancy and corneal toxicity. Iran J Pharm Res. 2016;15(1):3-22. PMID 27610144, PMCID PMC4986130.

Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010 Apr;6(2):324-33. doi: 10.1016/j.nano.2009.10.004. PMID 19857606.

Pathak MK, Chhabra G, Pathak K. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: ex-vivo transcorneal permeation, corneal toxicity and irritation testing. Drug Dev Ind Pharm. 2013 May;39(5):780-90. doi: 10.3109/03639045.2012.707203, PMID 22873799.

Wadhwa K, Sharma C, Goswami M, Thakur N. Formulation and evaluation of pH triggered in-situ ocular gel of ofloxacin. IJPSR. 2019;10:4507-12. doi: 10.13040/IJPSR.0975-8232.10(10).4507-12.

Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A. In situ ophthalmic gel forming systems of poloxamer 407 and hydroxypropyl methyl cellulose mixtures for sustained ocular delivery of chloramphenicole: optimization study by factorial design. Heliyon. 2020;6(11):e05365. doi: 10.1016/j.heliyon.2020.e05365. PMID 33251348.

Nagai N, Minami M, Deguchi S, Otake H, Sasaki H, Yamamoto N. An in situ gelling system based on methylcellulose and tranilast solid nanoparticles enhances ocular residence time and drug absorption into the cornea and conjunctiva. Front Bioeng Biotechnol. 2020;8:764. doi: 10.3389/fbioe.2020.00764, PMID 32733870.

Prinsen MK, Hendriksen CFM, Krul CAM, Woutersen RA. The isolated chicken eye test to replace the draize test in rabbits. Regul Toxicol Pharmacol. 2017 Apr;85:132-49. doi: 10.1016/j.yrtph.2017.01.009. PMID 28192172.

Budai P, Lehel J, Tavaszi J, Kormos E. HET-CAM test for determining the possible eye irritancy of pesticides. Acta Vet Hung. 2010 Sep;58(3):369-77. doi: 10.1556/AVet.58.2010.3.9, PMID 20713327.

Kıyan HT, Demirci B, Başer KH, Demirci F. The in vivo evaluation of anti-angiogenic effects of hypericum essential oils using the chorioallantoic membrane assay. Pharm Biol. 2014 Jan;52(1):44-50. doi: 10.3109/13880209.2013.810647, PMID 24044783.

Khan GJ, Omer MO, Ashraf M, Rehman HU, Khan ZU. Effect of punica granatum (pomegranate) fruit extract on angiogenesis. J Appl Pharm. 2013;4(2):764-80.

Katrancioglu N, Karahan O, Kilic AT, Altun A, Katrancioglu O, Polat ZA. The antiangiogenic effects of levosimendan in a CAM assay. Microvasc Res. 2012 May;83(3):263-6. doi: 10.1016/j.mvr.2012.01.002. PMID 22285653.

Pandey RK, Kumbhar BV, Srivastava S, Malik R, Sundar S, Kunwar A. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. J Biomol Struct Dyn. 2017 Jan;35(1):141-58. doi: 10.1080/07391102.2015.1135298, PMID 27043972.

Kumar A, Rathi E, Kini SG. E-pharmacophore modelling, virtual screening, molecular dynamics simulations and in-silico ADME analysis for identification of potential E6 inhibitors against cervical cancer. J Mol Struct. 2019;1189:299-306. doi: 10.1016/j.molstruc.2019.04.023.

Chowdhury KH, Chowdhury MR, Mahmud S, Tareq AM, Hanif NB, Banu N. Drug repurposing approach against novel coronavirus disease (COVID-19) through virtual screening targeting SARS-CoV-2 main protease. Biology (Basel). 2020 Dec 23;10(1):2. doi: 10.3390/biology10010002, PMID 33374717, PMCID PMC7822464.

Prabhu S, Vijayakumar S, Manogar P, Maniam GP, Govindan N. Homology modeling and molecular docking studies on type II diabetes complications reduced PPARγ receptor with various ligand molecules. Biomed Pharmacother. 2017 Aug;92:528-35. doi: 10.1016/j.biopha.2017.05.077. PMID 28575810.

Umamaheswari A, Kumar MM, Pradhan D, Marisetty H. Docking studies towards exploring antiviral compounds against envelope protein of yellow fever virus. Interdiscip Sci. 2011;3(1):64-77. doi: 10.1007/s12539-011-0064-y, PMID 21369890.

Desai N, Mahto MK, Alekhya B, Naveen CR, Bhaskar M. Comparative docking studies of estrogen receptor inhibitors and their binding interaction analysis. Int J Pharm Sci Rev Res. 2012;16(9).

Garala K, Joshi P, Shah M, Ramkishan A, Patel J. Formulation and evaluation of periodontal in situ gel. Int J Pharm Investig. 2013 Jan;3(1):29-41. doi: 10.4103/2230-973X.108961, PMID 23799203, PMCID PMC3687234.

Sri KV, Rohini P, Reddy GK. Montelukast sodium oral thin films: formulation and in vitro evaluation. Asian J Pharm Clin Res. 2012;5:266-70.

Laddha UD, Kshirsagar SJ. Formulation of nanoparticles loaded in situ gel for treatment of dry eye disease: in vitro, ex vivo and in vivo evidences. J Drug Deliv Sci Technol. 2021 Feb 1;61:102112. doi: 10.1016/j.jddst.2020.102112.

Morsi N, Ibrahim M, Refai H, El Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci. 2017 Jun 15;104:302-14. doi: 10.1016/j.ejps.2017.04.013. PMID 28433750.

Sousa F, Cruz A, Fonte P, Pinto IM, Neves Petersen MT, Sarmento B. A new paradigm for antiangiogenic therapy through controlled release of bevacizumab from PLGA nanoparticles. Sci Rep. 2017 Jun 16;7(1):3736, https://doi.org/10.1038/s41598-017-03959-4, PMID 28623267.

Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech. 2009;10(3):808-19, https://doi.org/10.1208/s12249-009-9268-4, PMID 19536653.

Kute PR, Gondkar SB, Saudagar RB. Ophthalmic in-situ gel: an overview. WJJPS. 2015;4:549-68. doi: 10.22270/jddt.v9i1.2231.

Ford JL. Design and evaluation of hydroxypropyl methylcellulose matrix tablets for oral controlled release: a historical perspective. Hydrophilic Matrix Tablets for Oral. J Control Release. 2014:17-51. doi: 10.1007/978-1-4939-1519-4_2.

Singh SK, Verma PR, Razdan B. Glibenclamide-loaded self-nanoemulsifying drug delivery system: development and characterization. Drug Dev Ind Pharm.. 2010 Aug;36(8):933-45. doi: 10.3109/03639040903585143, PMID: 20184416.

Budai P, Kormos E, Buda I, Somody G, Lehel J. Comparative evaluation of HET-CAM and ICE methods for objective assessment of ocular irritation caused by selected pesticide products. Toxicol In Vitro. 2021;74:105-50. doi: 10.1016/j.tiv.2021.105150. PMID 33753176.

Hussain I, Omer MO, Ashraf M. Effect of diclofenac sodium angiogenesis using chorioallantoic membrane (cam) assay. Journal of Applied Pharmacy. 2011 Jun 27;3:320-30.

Bashir MF, Qadir MI. Effect of ginger extract on angiogenesis using CAM assay. Bangladesh J Pharmacol. 2017;12(3):348-53, doi: 10.3329/bjp.v12i3.32616.

Saleem U, Ahmad B, Ahmad M, Hussain K, Bukhari NI, Ashraf M. Evaluation of anti-angiogenic activity of latex and extracts of Euphorbia helioscopia using chorioallontoic membrane (CAM) assay. Int J Agric Biol. 2015 Apr 30;17(2).

Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P. Insights into protein–ligand interactions: mechanisms, models, and methods. Int J Mol Sci. 2016;17(2):1-34. doi: 10.3390/ijms17020144, PMID 26821017.

Mukherjee S, Chatterjee G, Ghosh M, Das B, Majumder D. Efficacy and toxicity assessment of different antibody based antiangiogenic drugs by computational docking method. Advances in Bioinformatics. 2016:1-117053712, https://doi.org/10.1155/2016/7053712, PMID 27047544.

Chandrasekaran V, Ambati J, Ambati BK, Taylor EW. Molecular docking and analysis of interactions between vascular endothelial growth factor (VEGF) and SPARC protein. Journal of Molecular Graphics and Modelling. 2007 Nov 1;26(4):775-82, doi: 10.1016/j.jmgm.2007.05.001. PMID 17560152.

Published

07-07-2023

How to Cite

NARAYANA, S., AHMED, M. G., & NASRINE, A. (2023). DEVELOPMENT OF NANO IN SITU GELS OF BEVACIZUMAB FOR THE TREATMENT OF OCULAR ANGIOGENESIS: IN VITRO ASSESSMENT OF ANTI-ANGIOGENESIS ACTIVITY AND MOLECULAR DOCKING ANALYSIS. International Journal of Applied Pharmaceutics, 15(4), 201–213. https://doi.org/10.22159/ijap.2023v15i4.47860

Issue

Section

Original Article(s)