MODULATING THE DRUG SOLUBILITY OF ACECLOFENAC BY DESIGN AS SOLID LIPID PARTICLES: IN VITRO/IN VIVO CORRELATION

Authors

  • SIHAM A. ABDOUN Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
  • AMAL M. ALSUBAIYEL Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
  • DALIA A. GABER Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia https://orcid.org/0000-0002-1129-1021
  • BAYAN S. ALSAUDI College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
  • HAIFA A. ALRASHED College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
  • NORAH F. ALJARBOOA College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
  • RANEEM H. ALRADDADI College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
  • RAZAN R. ALHARBI College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
  • HEBA A. MOHAMED Department of Organic chemistry, National research center, Giza, Egypt

DOI:

https://doi.org/10.22159/ijap.2023v15i5.48108

Keywords:

Aceclofenac, Dissolution rate, In vivo studies, Analgesic, NSAID, Anti-inflammatory, Solid lipid

Abstract

Objective: The main objective of the study was to enhance the dissolution and hence the oral bioavailability of Aceclofenac (ACF).

Methods: ACF was formulated as solid lipid particles (SLPs), which compressed into a tablet form for immediate release purpose and certain formulations were then coated by Eudragit RS100 polymer for sustained release action. SLPs of ACF were prepared by melt fusion method under the optimum conditions, using Compritol ATO 888 (Cr), Precirol ATO 5 (Pr), glyceryl monstearate, polyethylene glycols 4000, and Poloxamer 188 at different ratios SLP formulations were characterized for particle size, flow characteristics. The compressed tablets were identified in term of hardness, friability, content, moisture uptake, and in vitro release. Oral pharmacokinetics of the optimum tablet formulation and marketed tablet as reference were studied in rabbits.

Results: SLP of acecloenac (ACF) showed accepted flowing properties, and the dissolution rate of the ACF from tablets was significantly enhanced compared to unprocessed drug. The results showed that about 45.5±2.5% of AC was released within 30 min from F1 while 12.7±4.5% was released from commercial AC tablets. The in vivo studies verified that the Cmax was 1.98±0.29, 2.10±0.33, and 4.83±86 µg/µl for the optimized immediate, sustained formula and commercial tablet, respectively. While the area under the curve from zero time to 24 h for the immediate and sustained release formula was 1.79, and 2.41 fold greater than the marketed formulation.

Conclusion: The results showed that solid lipid particles under optimized conditions might be an efficient method for improving the solubility and hence the bioavailability of poorly soluble drugs likes ACF. The proper coating of the formula helps to achieve a convenient release of the drug.

Downloads

Download data is not yet available.

References

Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7(5):1388-405. doi: 10.1021/mp100149j, PMID 20822152.

Desai NS, Galatage ST, Swapnil S. Harale, Suresh G Killedar, Ravindra B Kumbhar, Arehalli S Manjappa. Design and characterization of aceclofenac bio nanocomposite using natural solubilizes. IJPSR. 2021;12(12):6510-21. doi: 10.13040/IJPSR.0975-8232.

Prakash G, Chandra SA, Sandhya P, Bidur C, Samir D. Pharmacopoeial comparison of in-process and finished product quality control test for pharmaceutical tablets. GSC Biol and Pharm Sci. 2020;11(3):155-65. doi: 10.30574/gscbps.2020.11.3.0174.

Kumar S, Gupta A, Mishra C, Singh S. Synthesis, characterization and performance evaluation of aceclofenac-urea cocrystals. Indian J Pharm Sci. 2020;82(5):881-90. doi: 10.36468/pharmaceutical-sciences.717.

Sagare RD, Bolmal UB. Formulation and evaluation of aceclofenac matrix tablets using solid dispersed products. IJPSR. 2022;13(3);1231-40. doi: 10.13040/IJPSR.0975-8232.

Gaber DA, Radwan MA, Alzughaibi DA, Alail JA, Aljumah RS, Aloqla RM. Formulation and evaluation of piroxicam nanosponge for improved internal solubility and analgesic activity. Drug Deliv. 2023;30(1):2174208. doi: 10.1080/10717544.2023.2174208, PMID 36744372.

Patel HM, Patel UB, Shah C, Bhavesh Akbari. Formulation and development of nanosuspension as an alternative approach for solubility and dissolution enhancement of aceclofenac. International Journal of Advances in Pharmaceutics. 2018;07(05):33-47. : https://doi.org/10.7439/ijap

Gaber DA, Alhawas HS, Alfadhel FA, Abdoun SA, Alsubaiyel AM, Alsawi RM. Mini-tablets versus nanoparticles for controlling the release of amoxicillin: in vitro/in vivo study. Drug Des Devel Ther. 2020;14:5405-18. doi: 10.2147/DDDT.S285522. PMID 33324038.

Shankar B, Jalapathi P, Saikrishna B, Perugu S, Manga V. Synthesis, anti-microbial activity, cytotoxicity of some novel substituted (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl)benzofuran-2-yl)(phenyl)methanone analogs. Chem Cent J. 2018;12(1):1. doi: 10.1186/s13065-017-0364-3. PMID 29318401.

El Nabarawi MA, Teaima MH, Abd El-Monem RA, El Nabarawy NA, Gaber DA. Formulation, release characteristics, and bioavailability study of gastroretentive floating matrix tablet and floating raft system of mebeverine HCl. Drug Des Devel Ther. 2017;11:1081-93. doi: 10.2147/DDDT.S131936, PMID 28435220.

Santosh R, Shambhavi M, Kusuma B. Design, optimization and evaluation of aceclofenac fast dissolving tablets employing starch valerate–a novel super disintegrate. Int J Appl Pharm. 2021;13(4):168-76.

Barakat NS, Elbagory IM, Almurshedi AS. Formulation, release characteristics and bioavailability study of oral monolithic matrix tablets containing carbamazepine. AAPS PharmSciTech. 2008;9(3):931-8. doi: 10.1208/s12249-008-9108-y, PMID 18686038.

Hadi M, Babu V, Pal N. Formulation and evaluation of sustained release matrix tablets of glimepiride based on the combination of hydrophilic and hydrophobic polymers. J Appl Pharm Sci. 2012;2:101-7.

Sun L, Zhang W, Liu X, Sun J. Preparation and evaluation of sustained-release azithromycin tablets in vitro and in vivo. Asian J Pharm Sci. 2014;9(3):155-61. doi: 10.1016/j.ajps.2014.03.003.

Ghosh S, Barik BB. Formulation and in vitro evaluation of once daily sustained release formulation of aceclofenac. Trop J Pharm Res. 2010;9(3):265-73. doi: 10.4314/tjpr.v9i3.56288.

Kumar S, Gupta A, Mishra C, Singh S. Synthesis, characterization and performance evaluation of aceclofenac-urea cocrystals. Indian J Pharm Sci. 2020;82(5):881-90. doi: 10.36468/pharmaceutical-sciences.717.

Galal S, El Massik MA, Abdallah OY, Daabis NA. Study of in vitro release characteristics of carbamazepine extended-release semisolid matrix filled capsules based on gelucires. Drug Dev Ind Pharm. 2004;30(8):817-29. doi: 10.1081/ddc-200030497, PMID 15521328.

Wadher S, Momin M, Yeole P, Puranik M. Reverse phase HPLC method for determination of aceclofenac and paracetamol in tablet dosage form. Indian J Pharm Sci. 2006;68(3):387-9. doi: 10.4103/0250-474X.26672.

Fini A, Moyano JR, Gines JM, Perez Martinez JI, Rabasco AM. Diclofenac salts, II. Solid dispersions in PEG6000 and gelucire 50/13. Eur J Pharm Biopharm. 2005;60(1):99-111. doi: 10.1016/j.ejpb.2004.11.005, PMID 15848062.

Galal S, El-Massik M, Abdallah O, Daabis N. Formulation of fast release glibenclamide liquid and semi-solid matrix filled capsules. Acta Pharm. 2003;53(1):57-64. PMID 14769253.

Manjanna KM, Pramod Kumar TM, Shivakumar B. Effect of manufacturing conditions on physico-chemical characteristics and drug release profiles of aceclofenac sodium microbeads. Drug Invent Today. 2009;1:98-107.

Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev. 2007;59(7):667-76. doi: 10.1016/j.addr.2007.05.006, PMID 17618704.

Mutalik S, Naha A, Usha AN, Ranjith AK, Musmade P, Manoj K. Preparation, in vitro, preclinical and clinical evaluations of once daily sustained release tablets of aceclofenac. Arch Pharm Res. 2007;30(2):222-34. doi: 10.1007/BF02977698, PMID 17366745.

Kumardarapu B, Sundaramoorthy K, Vetrichelvan T. Formulation and in vitro evaluation of gastroretentive floating microspheres of ranitidine hydrochloride. RJPBS. 2011;2:789-801.

Chordiya M, Gangurde H, Borkar V. Technologies, optimization and analytical parameters in gastroretentive drug delivery systems. Current Science 2017;112(5):94653. doi: 10.18520/cs/v112/i05/946-953.

Gu X, Fediuk DJ, Simons FE, Simons KJ. Evaluation and comparison of five matrix excipients for the controlled release of acrivastine and pseudoephedrine. Drug Dev Ind Pharm. 2004;30(10):1009-17. doi: 10.1081/ddc-200040237, PMID 15595567.

Ghosal K, Rajabalaya R, Chakraborty S, Nanda A. Formulation and characterization of both hydrophilic and hydrophobic HPMC-based hydrogels containing diclofenac potassium. Lat Am J Pharm. 2010;29:1137-43.

US FDA guidance for industry. Waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system. Rockville, MD: Center for Drug Evaluation and Research (CDER); 2000.

Soni T, Nagda C, Gandhi T, Chotai NP. Development of a discriminating method for dissolution of aceclofenac marketed formulations. Dissolution Technol. 2008;15(2):31-5. doi: 10.14227/DT150208P31.

Sharma PR, Lewis SA. Design and in vitro/in vivo evaluation of extended release matrix tablets of nateglinide. J Young Pharm. 2013;5(4):167-72. doi: 10.1016/j.jyp.2013.11.003.

Yin L, Qin C, Chen K, Zhu C, Cao H, Zhou J. Gastro-floating tablets of cephalexin: preparation and in vitro/in vivo evaluation. Int J Pharm. 2013;452(1-2):241-8. doi: 10.1016/j.ijpharm.2013.05.011, PMID 23680730.

Musmade P, Subramanian G, Srinivasan KK. High-performance liquid chromatography and pharmacokinetics of aceclofenac in rats. Anal Chim Acta. 2007;585(1):103-9. doi: 10.1016/j.aca.2006.11.080, PMID 17386653.

Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11-23. doi: 10.1007/s11095-004-9004-4, PMID 15771225.

Yuksel N, Karataş A, Ozkan Y, Savaşer A, Ozkan SA, Baykara T. Enhanced bioavailability of piroxicam using gelucire 44/14 and labrasol: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2003;56(3):453-9. doi: 10.1016/s0939-6411(03)00142-5, PMID 14602190.

Vidyadhara S, Rao P, Prasad J. Formulation and evaluation of propranol hydrochloride oral controlled release matrix tablets. Ind J Pharm Sci. 2004;66(2):188-92.

Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release. 2011;154(1):2-19. doi: 10.1016/j.jconrel.2011.04.002, PMID 21497624.

FDA guidance for industry. Supac-MR–modified release solid oral dosage forms: scale-up and post-approval changes. Rockville, MD: Center for Drug Evaluation and Research (CDER); 1997.

Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123-33. doi: 10.1016/s0928-0987(01)00095-1, PMID 11297896.

Venkateswara B, Reddy K, Naga S. Formulation and evaluation of mebeverine hydrochloride sustained release tablets. Asian J Pharm Res. 2015;5(1):58-66.

Sood A, Panchagnula R. Design of controlled release delivery systems using a modified pharmacokinetic approach: a case study for drugs having a short elimination half-life and a narrow therapeutic index. Int J Pharm. 2003;261(1-2):27-41. doi: 10.1016/s0378-5173(03)00267-9. PMID 12878393.

Sinha S, Ali M, Baboota S, Ahuja A, Kumar A, Ali J. Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech. 2010;11(2):518-27. doi: 10.1208/s12249-010-9404-1, PMID 20238187.

Saanchez Lafuente C, Teresa Faucci MT, Fernandez Arevalo M, Alvarez-Fuentes J, Rabasco AM, Mura P. Development of sustained release matrix tablets of didanosine containing methacrylic and ethylcellulose polymers. Int J Pharm. 2002;234(1-2):213-21. doi: 10.1016/s0378-5173(01)00962-0, PMID 11839452.

Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H. Pharmaceutical particle technologies: Aan approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304-16. doi: 10.1016/j.ajps.2014.05.005.

Mani Ganesh M, Mani Vasudevan M, Kaliappan Kamalakannan K, Arthanari Saravana Kumar A, Mari Vinoba M, Swastika Ganguly, Thangavelu Sivakumar. Anti-inflammatory and analgesic effects of pongamia glabra leaf gall extract. Pharmacologyonline. 2008;1:497-512.

Al-Saidan SM, Krishnaiah YS, Patro SS, Satyanaryana V. In vitro and in vivo evaluation of guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. AAPS PharmSciTech. 2005;6(1):E14-21. doi: 10.1208/pt060105. PMID 16353958.

Longmei W, Ruihua F, Jinhua G, Yanwei X, Guihua H. Generic sustained release tablets of trimetazidine hydrochloride: preparation and in vitro–in vivo correlation studies. Asian J of Pharm Pharm Sci. 2016;1:417-26.

Guan J, Zhou L, Pan Y, Han H, Xu H, Pan W. A novel gastro-retentive osmotic pump capsule using asymmetric membrane technology: in vitro and in vivo evaluation. Pharm Res. 2010;27(1):105-14. doi: 10.1007/s11095-009-9984-1, PMID 19859791.

Published

07-09-2023

How to Cite

ABDOUN, S. A., ALSUBAIYEL, A. M., GABER, D. A., ALSAUDI, B. S., ALRASHED, H. A., ALJARBOOA, N. F., ALRADDADI, R. H., ALHARBI, R. R., & MOHAMED, H. A. (2023). MODULATING THE DRUG SOLUBILITY OF ACECLOFENAC BY DESIGN AS SOLID LIPID PARTICLES: IN VITRO/IN VIVO CORRELATION. International Journal of Applied Pharmaceutics, 15(5), 277–286. https://doi.org/10.22159/ijap.2023v15i5.48108

Issue

Section

Original Article(s)

Most read articles by the same author(s)