SOLID DISPERSION AS A POTENTIAL APPROACH TO IMPROVE DISSOLUTION AND BIOAVAILABILITY OF CURCUMIN FROM TURMERIC (CURCUMA LONGA L.)

Authors

  • RENI AGUSTINA Faculty of Pharmacy, Sanata Dharma University, Special Region of Yogyakarta-55281, Indonesia. Department of Research and Development, PT. Erlimpex, Semarang, Central Java-50269, Indonesia
  • DEWI SETYANINGSIH Faculty of Pharmacy, Sanata Dharma University, Special Region of Yogyakarta-55281, Indonesia

DOI:

https://doi.org/10.22159/ijap.2023v15i5.48295

Keywords:

Bioavailability, Carrier, Curcumin, Dissolution, NADES, Solid dispersion

Abstract

This review article attempts to outline techniques and solid dispersion carriers that have been applied to improve curcumin's solubility and bioavailability in turmeric extract. This paper also examines the variables that impact the efficacy of curcumin solid dispersion. Turmeric (Curcuma longa L.) contains curcuminoids as bioactive compounds consisting of curcumin, dimethoxy-curcumin, and bis-dimethoxy-curcumin. Curcumin, as the main component, is proven to have several pharmacological effects. However, it has limitations in modern drug development, such as poor stability, solubility, and bioavailability. Many studies have been conducted to overcome these limitations, including the application of solid dispersion. The preparation methods of curcumin solid dispersions are carried out by solvent evaporation, fusion/melting, and co-milling, using various types of carriers. However, the formation of a solid dispersion system only sometimes provides a considerable improvement in solubility, dissolution, and bioavailability. Differences in the selection of preparation methods, carriers, and solvents result in various arrangements of particles in the solid dispersion that may affect the performance of the system. In addition, the type of carrier also has a role in increasing curcumin permeability and bioavailability. Hydrophilic surfactant carriers have inhibitory activity against body transporters, such as P-gp and MRP, that can help to increase curcumin’s bioavailability. Natural Deep Eutectic Solvent (NADES) as a novel alternative solvent also has promising opportunities for the development of curcumin solid dispersion. Therefore, selecting appropriate preparation methods, carriers, and solvents should be considered to achieve optimum solubility, dissolution, and bioavailability of curcumin.

Downloads

Download data is not yet available.

References

Sarkar P, Das S, Majee SB. Solid dispersion tablets in improving oral bioavailability of poorly soluble drugs. Int J Curr Pharm Sci. 2022;14(2):15-20. doi: 10.22159/ijcpr.2022v14i2.1961.

Alshehri S, Imam SS, Hussain A, Altamimi MA, Alruwaili NK, Alotaibi F. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents. Drug Deliv. 2020;27(1):1625-43. doi: 10.1080/10717544.2020.1846638, PMID 33207947.

Bindhani S, Mohapatra S. Recent approaches of solid dispersion: a new concept toward oral bioavailability. Asian J Pharm Clin Res. 2018;11(2):72-8. doi: 10.22159/ajpcr.2018.v11i2.23161.

Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11(3):1-26. doi: 10.3390/pharmaceutics11030132, PMID 30893899.

Ridwan Nafis FD, Sriwidodo, Chaerunisaa AY. Study on increasing solubility of isolates: methods and enhancement polymers. Int J App Pharm. 2022;14(6):1-8. doi: 10.22159/ijap.2022v14i6.45975.

Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):18-25. doi: 10.1016/j.apsb.2013.11.001. PMID 26579360.

Tekade AR, Yadav JN. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv Pharm Bull. 2020;10(3):359-69. doi: 10.34172/apb.2020.044, PMID 32665894.

Tambosi G, Coelho PF, Luciano S, Lenschow ICS, Zétola M, Stulzer HK. Challenges to improve the biopharmaceutical properties of poorly water-soluble drugs and the application of the solid dispersion technology. Materia (Rio J.) 2018;23(4). doi: 10.1590/s1517-707620180004.0558.

Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics. 2018;10(3):1-33. doi: 10.3390/pharmaceutics10030074, PMID 29937483.

Vo CLN, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3 Pt B):799-813. doi: 10.1016/j.ejpb.2013.09.007. PMID 24056053.

Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23-24):1068-75. doi: 10.1016/j.drudis.2007.09.005. PMID 18061887.

Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631-52. doi: 10.1007/s00018-008-7452-4, PMID 18324353.

Ammon HPT, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 1991;57(1):1-7. doi: 10.1055/s-2006-960004, PMID 2062949.

Stanic Z. Curcumin, a compound from natural sources, a true scientific challenge–a review. Plant Foods Hum Nutr. 2017;72(1):1-12. doi: 10.1007/s11130-016-0590-1, PMID 27995378.

Zheng B, McClements DJ. Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability. Molecules. 2020;25(12):1-25. doi: 10.3390/molecules25122791, PMID 32560351.

Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091-112. doi: 10.3390/molecules191220091, PMID 25470276.

Siviero A, Gallo E, Maggini V, Gori L, Mugelli A, Firenzuoli F. Curcumin, a golden spice with a low bioavailability. J Herb Med. 2015;5(2):57-70. doi: 10.1016/j.hermed.2015.03.001.

Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Copenh). 1978;43(2):86-92. doi: 10.1111/j.1600-0773.1978.tb02240.x. PMID 696348.

Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;853(1-2):183-9. doi: 10.1016/j.jchromb.2007.03.010. PMID 17400527.

Wan S, Sun Y, Qi X, Tan F. Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech. 2012;13(1):159-66. doi: 10.1208/s12249-011-9732-9, PMID 22173375.

Hu L, Shi Y, Li JH, Gao N, Ji J, Niu F. Enhancement of oral bioavailability of curcumin by a novel solid dispersion system. AAPS PharmSciTech. 2015;16(6):1327-34. doi: 10.1208/s12249-014-0254-0, PMID 25804949.

Al-Akayleh F, Al-Naji I, Adwan S, Al-Remawi M, Shubair M. Enhancement of curcumin solubility using a novel solubilizing polymer Soluplus®. J Pharm Innov. 2022;17(1):142-54. doi: 10.1007/s12247-020-09500-x.

Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195-218. doi: 10.1208/s12248-012-9432-8, PMID 23143785.

Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):1-11. doi: 10.3390/foods6100092, PMID 29065496.

Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res. 2018;32(6):985-95. doi: 10.1002/ptr.6054. PMID 29480523.

Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017;57(13):2889-95. doi: 10.1080/10408398.2015.1077195, PMID 26528921.

Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6:10. doi: 10.1186/1472-6882-6-10. PMID 16545122.

Nikghalb LA, Singh G, Singh G, Kahkeshan KF. Solid dispersion: methods and polymers to increase the solubility of poorly soluble drugs. J Appl Pharm Sci. 2012;2(10):170-5. doi: 10.7324/JAPS.2012.21031.

Guo L, Shi M, Song N, Wan Z, Liu H, Liu L. Anchorage of curcumin onto PVP enhances anti-tumor effect of curcumin. Med Chem Res. 2019;28(5):646-56. doi: 10.1007/s00044-019-02319-3.

He Y, Liu H, Bian W, Liu Y, Liu X, Ma S. Molecular interactions for the curcumin-polymer complex with enhanced anti-inflammatory effects. Pharmaceutics. 2019;11(9):1-21. doi: 10.3390/pharmaceutics11090442, PMID 31480578.

Li J, Wang X, Li C, Fan N, Wang J, He Z. Viewing molecular and interface interactions of curcumin amorphous solid dispersions for comprehending dissolution mechanisms. Mol Pharm. 2017;14(8):2781-92. doi: 10.1021/acs.molpharmaceut.7b00319. PMID 28661679.

Fan N, Ma P, Wang X, Li C, Zhang X, Zhang K. Storage stability and solubilization ability of HPMC in curcumin amorphous solid dispersions formulated by Eudragit E100. Carbohydr Polym. 2018;199:492-8. doi: 10.1016/j.carbpol.2018.07.036. PMID 30143154.

Shin MS, Yu JS, Lee J, Ji YS, Joung HJ, Han YM. A hydroxypropyl methylcellulose-based solid dispersion of curcumin with enhanced bioavailability and its hepatoprotective activity. Biomolecules. 2019;9(7). doi: 10.3390/biom9070281, PMID 31311168.

Al-Taani B, Khanfar MAI, Abu Alsoud OA. Enhancement of the release of curcumin by the freeze drying technique using inulin and neusilin as carriers. Int J App Pharm. 2018;10(3):42-8. doi: 10.22159/ijap.2018v10i3.24429.

Song IS, Cha JS, Choi MK. Characterization, in vivo and in vitro evaluation of solid dispersion of curcumin containing D-α-tocopheryl polyethylene glycol 1000 succinate and mannitol. Molecules. 2016;21(10). doi: 10.3390/molecules21101386, PMID 27763524.

Teixeira CCC, Mendonça LM, Bergamaschi MM, Queiroz RHC, Souza GEP, Antunes LMG. Microparticles containing curcumin solid dispersion: stability, bioavailability and anti-inflammatory activity. AAPS PharmSciTech. 2016;17(2):252-61. doi: 10.1208/s12249-015-0337-6, PMID 26040724.

Hou Y, Wang H, Zhang F, Sun F, Xin M, Li M. Novel self-nanomicellizing formulation based on rebaudioside a: a potential nanoplatform for oral delivery of curcumin. Mater Sci Eng C. 2020;112:557-71. doi: 10.1016/j.msec.2020.11092632409076.

Muthu MJ, Kavitha K, Chitra KS, Nandhineeswari S. Soluble curcumin prepared by solid dispersion using four different carriers: phase solubility, molecular modelling and physicochemical characterization. Trop J Pharm Res. 2019;18(8):1581-8. doi: 10.4314/tjpr.v18i8.2.

Parikh A, Kathawala K, Song Y, Zhou XF, Garg S. Curcumin-loaded self-nanomicellizing solid dispersion system: part I: Development, optimization, characterization, and oral bioavailability. Drug Deliv Transl Res. 2018;8(5):1389-405. doi: 10.1007/s13346-018-0543-3, PMID 29845380.

Fan W, Zhang X, Zhu W, Zhang X, Di L. Preparation of curcumin-eudragit® e po solid dispersions with gradient temperature through hot-melt extrusion. Molecules. 2021;26(16). doi: 10.3390/molecules26164964, PMID 34443551.

Rajadhyax A, Shinde U, Desai H, Mane S. Hot melt extrusion in engineering of drug cocrystals: a review. Asian J Pharm Clin Res. 2021;14(8):10-9. doi: 10.22159/ajpcr.2021.v14i8.41857.

Dharmalingam K, Anandalakshmi R, Shekhar S. Microwave-induced diffusion method for solid dispersion of curcumin in HPMC matrix using water as hydration carrier. J Dispers Sci Technol. 2021;42(10):1419-30. doi: 10.1080/01932691.2020.1770608.

Loh ZH, Samanta AK, Sia Heng PW. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10(4):255-74. doi: 10.1016/j.ajps.2014.12.006.

Zhang Q, Polyakov NE, Chistyachenko YS, Khvostov MV, Frolova TS, Tolstikova TG. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv. 2018;25(1):198-209. doi: 10.1080/10717544.2017.1422298, PMID 29302995.

Zhang Q, Suntsova L, Chistyachenko YS, Evseenko V, Khvostov MV, Polyakov NE. Preparation, physicochemical and pharmacological study of curcumin solid dispersion with an arabinogalactan complexation agent. Int J Biol Macromol. 2019;128:158-66. doi: 10.1016/j.ijbiomac.2019.01.079. PMID 30664966.

Lu Y, Lin M, Zong J, Zong L, Zhao Z, Wang S. Highly bioavailable curcumin preparation with a co-grinding and solvent-free process. Food Sci Nutr. 2020;8(12):6415-25. doi: 10.1002/fsn3.1930, PMID 33312527.

Mai NNS, Otsuka Y, Kawano Y, Hanawa T. Preparation and characterization of solid dispersions composed of curcumin, hydroxypropyl cellulose and/or sodium dodecyl sulfate by grinding with vibrational ball milling. Pharmaceuticals (Basel). 2020;13(11):1-15. doi: 10.3390/ph13110383, PMID 33198284.

Gangurde AB, Kundaikar HS, Javeer SD, Jaiswar DR, Degani MS, Amin PD. Enhanced solubility and dissolution of curcumin by a hydrophilic polymer solid dispersion and its insilico molecular modeling studies. J Drug Deliv Sci Technol. 2015;29:226-37. doi: 10.1016/j.jddst.2015.08.005.

Alves TFR, das Neves Lopes FCC, Rebelo MA, Souza JF, da Silva Pontes K, Santos C. Crystalline ethylene oxide and propylene oxide triblock copolymer solid dispersion enhance solubility, stability and promoting time-controllable release of curcumin. Recent Pat Drug Deliv Formul. 2018;12(1):65-74. doi: 10.2174/1872211312666180118104920, PMID 29345599.

Ishtiaq M, Asghar S, Khan IU, Iqbal MS, Khalid SH. Development of the amorphous solid dispersion of curcumin: a rational selection of polymers for enhanced solubility and dissolution. Crystals. 2022;12(11):1606. doi: 10.3390/cryst12111606.

Setyaningsih D, Palupi DR, Hartini YS. Influence of dispersing solvent on curcumin dissolution from solid dispersions prepared using hydroxypropyl methylcellulose-polyvinylpyrrolidone K30. Pharm Educ. 2022;22(2):74-8. doi: 10.46542/pe.2022.222.7478.

Paudel A, Van Den Mooter G. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying. Pharm Res. 2012;29(1):251-70. doi: 10.1007/s11095-011-0539-x, PMID 21773852.

Costa ED, Priotti J, Orlandi S, Leonardi D, Lamas MC, Nunes TG. Unexpected solvent impact in the crystallinity of praziquantel/poly(vinylpyrrolidone) formulations. A solubility, DSC and solid-state NMR study. Int J Pharm. 2016;511(2):983-93. doi: 10.1016/j.ijpharm.2016.08.009. PMID 27506511.

Dohrn S, Luebbert C, Lehmkemper K, Kyeremateng SO, Degenhardt M, Sadowski G. Solvent influence on the phase behavior and glass transition of amorphous solid dispersions. Eur J Pharm Biopharm. 2021;158:132-42. doi: 10.1016/j.ejpb.2020.11.002. PMID 33212185.

Hancock BC, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;11(4):471-7. doi: 10.1023/a:1018941810744. PMID 8058600.

Chemat F, Abert Vian M, Fabiano Tixier AS, Strube J, Uhlenbrock L, Gunjevic V. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal Chem. 2019;118:248-63. doi: 10.1016/j.trac.2019.05.037.

Choi YH, Verpoorte R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr Opin Food Sci. 2019;26:87-93. doi: 10.1016/j.cofs.2019.04.003.

Jelinski T, Przybyłek M, Cysewski P. Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharm Res. 2019;36(8):116. doi: 10.1007/s11095-019-2643-2, PMID 31161340.

Hikmawanti NPE, Ramadon D, Jantan I, Mun’im A. Natural deep eutectic solvents (NADES): phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants (Basel). 2021;10(10):1-18. doi: 10.3390/plants10102091, PMID 34685899.

Huber V, Muller L, Degot P, Touraud D, Kunz W. NADES-based surfactant-free microemulsions for solubilization and extraction of curcumin from Curcuma longa. Food Chem. 2021;355:129624. doi: 10.1016/j.foodchem.2021.129624. PMID 33799268.

Liu M, Lai Z, Zhu L, Ding X, Tong X, Wang Z. Novel amorphous solid dispersion based on natural deep eutectic solvent for enhancing delivery of anti-tumor RA-XII by oral administration in rats. Eur J Pharm Sci. 2021;166:105931. doi: 10.1016/j.ejps.2021.105931. PMID 34256100.

Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15(12):1867-76. doi: 10.1016/s0731-7085(96)02024-9, PMID 9278892.

Tonnesen HH, Masson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1-2):127-35. doi: 10.1016/s0378-5173(02)00323-x, PMID 12204572.

Tønnesen HH, Karlsen J. Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution. Z Lebensm Unters Forsch. 1985;180(5):402-4. doi: 10.1007/BF01027775. PMID 4013525.

Fan N, Lu T, Li J. Surface tracking of curcumin amorphous solid dispersions formulated by binary polymers. J Pharm Sci. 2020;109(2):1068-78. doi: 10.1016/j.xphs.2019.10.030, PMID 31639390.

Eckford PDW, Sharom FJ. ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev. 2009;109(7):2989-3011. doi: 10.1021/cr9000226, PMID 19583429.

Lopes Rodrigues V, Sousa E, Vasconcelos MH. Curcumin as a modulator of P-glycoprotein in cancer: challenges and perspectives. Pharmaceuticals (Basel). 2016;9(4):1-11. doi: 10.3390/ph9040071, PMID 27834897.

Zhou S, Lim LY, Chowbay B. Herbal modulation of P-glycoprotein. Drug Metab Rev. 2004;36(1):57-104. doi: 10.1081/dmr-120028427, PMID 15072439.

Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385-427. doi: 10.1146/annurev.bi.62.070193.002125. PMID 8102521.

Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 1986;47(3):381-9. doi: 10.1016/0092-8674(86)90595-7. PMID 2876781.

Romiti N, Tongiani R, Cervelli F, Chieli E. Effects of curcumin on P-glycoprotein in primary cultures of rat hepatocytes. Life Sci. 1998;62(25):2349-58. doi: 10.1016/s0024-3205(98)00216-1, PMID 9651124.

Hou XL, Takahashi K, Tanaka K, Tougou K, Qiu F, Komatsu K. Curcuma drugs and curcumin regulate the expression and function of P-gp in caco-2 cells in completely opposite ways. Int J Pharm. 2008;358(1-2):224-9. doi: 10.1016/j.ijpharm.2008.03.010. PMID 18439772.

Zhang X, Chen Q, Wang Y, Peng W, Cai H. Effects of curcumin on ion channels and transporters. Front Physiol. 2014;5(94):94. doi: 10.3389/fphys.2014.00094, PMID 24653706.

Prakash AS. Selecting surfactants for the maximum inhibition of the activity of the multi drug resistance efflux pump transporter, P-glycoprotein: conceptual development. J Excipients Food Chem. 2010;1(3):51-9.

Hanke U, May K, Rozehnal V, Nagel S, Siegmund W, Weitschies W. Commonly used nonionic surfactants interact differently with the human efflux transporters ABCB1 (p-glycoprotein) and ABCC2 (MRP2). Eur J Pharm Biopharm. 2010;76(2):260-8. doi: 10.1016/j.ejpb.2010.06.008. PMID 20600890.

Dintaman JM, Silverman JA. Inhibition of P-glycoprotein by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res. 1999;16(10):1550-6. doi: 10.1023/a:1015000503629. PMID 10554096.

Seo SW, Han HK, Chun MK, Choi HK. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int J Pharm. 2012;424(1-2):18-25. doi: 10.1016/j.ijpharm.2011.12.051. PMID 22226878.

Kommuru TR, Gurley B, Khan MA, Reddy IK. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm. 2001;212(2):233-46. doi: 10.1016/s0378-5173(00)00614-1, PMID 11165081.

Huang R, Han J, Wang R, Zhao X, Qiao H, Chen L. Surfactant-free solid dispersion of BCS class IV drug in an amorphous chitosan oligosaccharide matrix for concomitant dissolution in vitro–permeability increase. Eur J Pharm Sci. 2019;130:147-55. doi: 10.1016/j.ejps.2019.01.031. PMID 30699368.

Muthu MJ, Kavitha K, Chitra KS, Nandhineeswari S. Soluble curcumin prepared by solid dispersion using four different carriers: phase solubility, molecular modelling and physicochemical characterization. Trop J Pharm Res. 2019;18(8):1581-8. doi: 10.4314/tjpr.v18i8.2.

Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281-302. doi: 10.1002/jps.2600600902, PMID 4935981.

Laitinen R, Priemel PA, Surwase S, Graeser K, Strachan CJ, Grohganz H. Theoretical considerations in developing amorphous solid dispersions. Adv Deliv Sci Technol. 2014:35-90. doi: 10.1007/978-1-4939-1598-9_2.

Meng F, Gala U, Chauhan H. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques. Drug Dev Ind Pharm. 2015;41(9):1401-15. doi: 10.3109/03639045.2015.1018274, PMID 25853292.

Tran TTD, Tran PHL. Molecular interactions in solid dispersions of poorly water-soluble drugs. Pharmaceutics. 2020;12(8):1-12. doi: 10.3390/pharmaceutics12080745, PMID 32784790.

Sanabria Ortiz K, Hernandez Espinell JR, Ortiz Torres D, Lopez Mejias V, Stelzer T. Polymorphism in solid dispersions. Cryst Growth Des. 2020;20(2):713-22. doi: 10.1021/acs.cgd.9b01138.

Jelic D. Thermal stability of amorphous solid dispersions. Molecules. 2021;26(1). doi: 10.3390/molecules26010238, PMID 33466393.

Sopyan I, Gozali D, Megantara S, Wahyuningrum R, Sunan Ks I. Review: an efforts to increase the solubility and dissolution of active pharmaceutical ingredients. Int J App Pharm. 2022;14(1):22-7. doi: 10.22159/ijap.2022v14i1.43431.

Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058-66. doi: 10.1021/js980403l10514356, PMID 10514356.

Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1-12. doi: 10.1021/js96018969002452, PMID 9002452.

Tambe S, Jain D, Meruva SK, Rongala G, Juluri A, Nihalani G. Recent advances in amorphous solid dispersions: preformulation, formulation strategies, technological advancements and characterization. Pharmaceutics. 2022;14(10). doi: 10.3390/pharmaceutics14102203, PMID 36297638.

Liu B, Theil F, Lehmkemper K, Gessner D, Li Y, Van Lishaut H. Crystallization risk assessment of amorphous solid dispersions by physical shelf-life modeling: a practical approach. Mol Pharm. 2021;18(6):2428-37. doi: 10.1021/acs.molpharmaceut.1c00270, PMID 34032433.

Van Drooge DJ, Hinrichs WLJ, Frijlink HW. Anomalous dissolution behaviour of tablets prepared from sugar glass-based solid dispersions. J Control Release. 2004;97(3):441-52. doi: 10.1016/j.jconrel.2004.03.018. PMID 15212876.

Srinarong P, Kouwen S, Visser MR, Hinrichs WLJ, Frijlink HW. Effect of drug-carrier interaction on the dissolution behavior of solid dispersion tablets. Pharm Dev Technol. 2010;15(5):460-8. doi: 10.3109/1083745090328652920735300, PMID 20735300.

de Waard H, Hinrichs WLJ, Frijlink HW. A novel bottom-up process to produce drug nanocrystals: controlled crystallization during freeze-drying. J Control Release. 2008;128(2):179-83. doi: 10.1016/j.jconrel.2008.03.002. PMID 18423767.

de Waard H, Hinrichs WLJ, Visser MR, Bologna C, Frijlink HW. Unexpected differences in dissolution behavior of tablets prepared from solid dispersions with a surfactant physically mixed or incorporated. Int J Pharm. 2008;349(1-2):66-73. doi: 10.1016/j.ijpharm.2007.07.023. PMID 17804180.

Karolewicz B, Gorniak A, Probst S, Owczarek A, Pluta J, Zurawska Płaksej E. Solid dispersions in pharmaceutical technology. Ppart I. Classification and methods to obtain solid dispersions. Polim Med. 2012;42(1):17-27. PMID 22783729.

Published

07-09-2023

How to Cite

AGUSTINA, R., & SETYANINGSIH, D. (2023). SOLID DISPERSION AS A POTENTIAL APPROACH TO IMPROVE DISSOLUTION AND BIOAVAILABILITY OF CURCUMIN FROM TURMERIC (CURCUMA LONGA L.). International Journal of Applied Pharmaceutics, 15(5), 37–47. https://doi.org/10.22159/ijap.2023v15i5.48295

Issue

Section

Review Article(s)