DEVELOPMENT AND EVALUATION OF GASTRIC FLOATING TABLETS OF RIBOFLAVIN USING BOX-BEHNKEN DESIGN

Authors

  • PADMA SVN A. U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India https://orcid.org/0009-0009-4450-970X
  • NAGARAJU PAPPULA Hindu College of Pharmacy, Amaravathi Road, Guntur, Andhra Pradesh, India
  • V. VASU NAIK Hindu College of Pharmacy, Amaravathi Road, Guntur, Andhra Pradesh, India https://orcid.org/0000-0002-7386-6222
  • VENKATA RAMANA MURTHY KOLAPALLI A. U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India

DOI:

https://doi.org/10.22159/ijap.2023v15i5.48414

Keywords:

Box-behnken design, Floating tablets, In vitro release characteristics, Optimization, Riboflavin, Sintering

Abstract

Objective: To develop and evaluate gastric floating tablets of riboflavin that was thermally fused using an experimental design method.

Methods: Gastric floating tablets were developed using the Box-Behnken design. The effect of sintering on various tablet properties is assessed. The prepared floating tablets were tested for characteristics like usual tablet quality control tests with special emphasis on buoyancy studies and in vitro drug release studies.

Results: The drug-excipient incompatibility studies indicated no interactions between riboflavin and carnauba wax. Sintering the powder at 1200, °C partially decreased its crystallinity and improved drug release for up to 16 h. The tablets demonstrated good flow properties, acceptable hardness, low friability, and uniformity in thickness and diameter. Statistical models successfully optimized the formulation to achieve desired characteristics and practical compressibility. The optimal amounts of the variables, according to Design Expert® 12 software, were 59.19 mg of carnauba wax, 14.63% w/w of sodium bicarbonate, a sintering temperature of 74.68 °C, and a sintering exposure time of 1.99 h.

Conclusion: In vitro dissolution studies were conducted on the optimized formulation to verify the model's predictions. The experimental results closely matched the predictions. The optimized formulations showed a floating lag time of 104 seconds and a floating duration of 12.3 h. The obtained T90 was found to be 11.3 h which followed zero order kinetics with a non-Fickian diffusion mechanism.

Downloads

Download data is not yet available.

Author Biography

NAGARAJU PAPPULA, Hindu College of Pharmacy, Amaravathi Road, Guntur, Andhra Pradesh, India

 

 

References

Banker GS. The theory and practice of industrial pharmacy. J Pharm Sci. 1970 Oct;59(10):1531.

Mehta R, Chawla A, Sharma P, Pawar P. Formulation and in vitro evaluation of Eudragit S-100 coated naproxen matrix tablets for colon-targeted drug delivery system. J Adv Pharm Technol Res. 2013;4(1):31-41. doi: 10.4103/2231-4040.107498, PMID 23662280.

Boyd BJ, Nguyen TH, Mullertz A. Lipids in oral controlled release drug delivery Wilson CG, Crowley PJ, editors. New York: Springer; 2011. p. 299-321.

Jaimini M, Rana AC, Tanwar YS. Formulation and evaluation of famotidine floating tablets. Curr Drug Deliv. 2007;4(1):51-5. doi: 10.2174/156720107779314730, PMID 17269917.

Padmavathy J, Saravanan D, Rajesh D. Formulation and evaluation of ofloxacin floating tablets using HPMC. Int J Pharm Pharm Sci. 2011;3(1):170-3.

Rao MR. Design and evaluation of sustained-release matrix tablets using the sintering technique. Int J Pharm Pharm Sci. 2016;8(2):115-21.

Chandan Mohanty M, Ismail I, Tongali Saikiran. Use of sintering technique in the design of controlled release stomach-specific floating drug delivery systems. J Pharamceutical Adv Res. 2019;2(3):498-505.

Kumar S, Garg SKR. Fast dissolving tablets (FDTs): current status, new market opportunities, recent advances in manufacturing technologies, and future prospects. Int J Pharm Pharm Sci. 2014;6(7):22-35.

Bhagwat RR, Vaidya IS. Formulation of verapamil hydrochloride matrix granules by sintering technique and its evaluation. Int res J Publ Glob Journals Inc; 2014. p. 14.

Pinto JT, Zempleni J. Riboflavin. Adv Nutr. 2016;7(5):973-5. doi: 10.3945/an.116.012716, PMID 27633112.

Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr. 2003;77(6):1352-60. doi: 10.1093/ajcn/77.6.1352, PMID 12791609.

Massey V. The chemical and biological versatility of riboflavin. Biochem Soc Trans. 2000;28(4):283-96. doi: 10.1042/bst0280283, PMID 10961912.

Thakur K, Tomar SK, Singh AK, Mandal S, Arora S. Riboflavin and health: a review of recent human research. Crit Rev Food Sci Nutr. 2017;57(17):3650-60. doi: 10.1080/10408398.2016.1145104, PMID 27029320.

Karnachi A. Box-behnken design for the optimization of formulation variables of indomethacin coprecipitates with polymer mixtures. Int J Pharm. 1996;131(1):9-17. doi: 10.1016/0378-5173(95)04216-4.

Filipowicz A, Wołowiec S. Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers. Int J Pharm. 2011;408(1-2):152-6. doi: 10.1016/j.ijpharm.2011.01.033, PMID 21272625.

Zanetti Polzi L, Aschi M, Daidone I, Amadei A. Theoretical modeling of the absorption spectrum of aqueous riboflavin. Chem Phys Lett. 2017;669:119-24. doi: 10.1016/j.cplett.2016.12.022.

VK, Reddy RA, Bomma R. Drug-excipient interaction during formulation development, in vitro and in vivo evaluation of gastroretentive drug delivery system for nizatidine. PCI-Approved-IJPSN. 2013;6(4):2281-93. doi: 10.37285/ijpsn.2013.6.4.11.

Chadha R, Bhandari S. Drug-excipient compatibility screening–role of thermoanalytical and spectroscopic techniques. J Pharm Biomed Anal. 2014;87:82-97. doi: 10.1016/j.jpba.2013.06.016, PMID 23845418.

Lachman L, Schwartz JB. Herberta lie Berman. Joseph L Kanig, The theory and practice and industrial pharmacy; 1991. p. 293-345.

Roy H. Box-behnken design for optimization of formulation variables for fast dissolving tablet of urapidil. Asian J Pharm (AJP). 2018;12(03).

Sato K. Crystallization behaviour of fats and lipids-a review. Chem Eng Sci. 2001;56(7):2255-65. doi: 10.1016/S0009-2509(00)00458-9.

Brniak W, Jachowicz R, Krupa A, Skorka T, Niwinski K. Evaluation of co-processed excipients used for direct compression of orally disintegrating tablets (ODT) using novel disintegration apparatus. Pharm Dev Technol. 2013;18(2):464-74. doi: 10.3109/10837450.2012.710238, PMID 22881600.

Kulkarni A, Bhatia M. Development and evaluation of regioselective bilayer floating tablets of atenolol and lovastatin for biphasic release profile; 2009.

Nur AO, Zhang JS. Captopril floating and/or bioadhesive tablets: design and release kinetics. Drug Dev Ind Pharm. 2000;26(9):965-9. doi: 10.1081/ddc-100101323, PMID 10914320.

Delalonde M, Ruiz T. Dissolution of pharmaceutical tablets: the influence of penetration and drainage of interstitial fluids. Chem Eng Process. 2008;47(3):370-6. doi: 10.1016/j.cep.2007.01.003.

Breaux J, Jones K, Boulas P. Analytical methods development and validation. Pharm Technol. 2003;1:6-13.

Atia NN, Marzouq MA, Hassan AI, Eltoukhi WE. A rapid FTIR spectroscopic assay for quantitative determination of memantine hydrochloride and amisulpride in human plasma and pharmaceutical formulations. Spectrochim Acta A Mol Biomol Spectrosc. 2020;236:118377. doi: 10.1016/j.saa.2020.118377, PMID 32330826.

Reddy RA, Ramesh B, Kishan V. Drug-excipient interaction during formulation development, in vitro and in vivo evaluation of gastroretentive drug delivery system for nizatidine. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN). 2013;6(4). https://doi.org/10.37285/ijpsn.2013.6.4.11

Chauhan A. Powder XRD technique and its applications in science and technology. J Anal Bioanal Tech. 2014;5(6):1-5. doi: 10.4172/2155-9872.1000212.

Geldart D, Abdullah EC, Hassanpour A, N Woke LC, Wouters I. Characterization of powder flowability using measurement of angle of repose. China Part. 2006;4(3-4):104-7. doi: 10.1016/S1672-2515(07)60247-4.

Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(12):1145-9. doi: 10.1002/jps.2600521210, PMID 14088963.

Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25-35. doi: 10.1016/0378-5173(83)90064-9.

Singh R, Poddar SS, Chivate A. Sintering of wax for controlling release from pellets. AAPS PharmSciTech. 2007;8(3):E74. doi: 10.1208/pt0803074, PMID 17915824.

Mohanty C, Subrahmanyam KV. Design of controlled release mucoadhesive buccal tablets of ivabradine HCl using sintering technique. Int J App Pharm. 2021 Jul 7;13(4):192-203. doi: 10.22159/ijap.2021v13i4.41931.

Gohel MC, Jogani PD. A review of co-processed directly compressible excipients. J Pharm Pharm Sci. 2005;8(1):76-93. PMID 15946601.

Agarwal S, Zamil F, Singh L, Saxena A. Formulation and evaluation of floating beads of diltiazem HCl. Int J Curr Pharm Res. 2016 Jul;8(3):38-42.

Juweriya A, Ratnamala KV. Formulation and evaluation of sintered gastroretentive tablets of vildagliptin using design of experiment. Asian J Pharm Clin Res. 2023 Jun;16(6):46-52. doi: 10.22159/ajpcr.2023.v16i6.47150.

Nandi S. 3D printing of pharmaceuticals–leading trend in pharmaceutical industry and future perspectives. Asian J Pharm Clin Res. 2020 Dec;13(12):10-6. doi: 10.22159/ajpcr.2020.v13i12.39584.

Published

07-09-2023

How to Cite

SVN, P., PAPPULA, N., NAIK, V. V., & MURTHY KOLAPALLI, V. R. (2023). DEVELOPMENT AND EVALUATION OF GASTRIC FLOATING TABLETS OF RIBOFLAVIN USING BOX-BEHNKEN DESIGN. International Journal of Applied Pharmaceutics, 15(5), 294–302. https://doi.org/10.22159/ijap.2023v15i5.48414

Issue

Section

Original Article(s)