IN SILICO MOLECULAR SCREENING AND DOCKING APPROACHES ON ANTINEOPLASTIC AGENT-IRINOTECAN TOWARDS THE MARKER PROTEINS OF COLON CANCER
DOI:
https://doi.org/10.22159/ijap.2023v15i5.48523Keywords:
Colorectal cancer, Irinotecan hydrochloride, Marker proteins, Molecular Docking, Lipinski's ruleAbstract
Objective: The present investigation explores the binding affinities of Irinotecan, which is a topoisomerase I inhibitor, against the targets such as AKT1, TNKS-2, MMP, EGFR, TNKS-1, and BRAF, which are the protein that was overexpressed by colorectal carcinogenesis.
Methods: In this study, the drug structure was drawn by chemdraw software and explored for its anti-cancer potential by Schrodinger software against selected targeted proteins such as epidermal growth factor receptor (EGFR), matrix metalloproteinase (MMPs), serine/threonine protein kinase Ba (AKT1), BRAF, tankyrases 1 (TNKS-1, and tankyrases 2 (TNKS-2).
Results: From the results of docking analysis, the targets with the maximum binding affinity towards the preselected drug Irinotecan were further subjected to ADME prediction by the QikProp module of Schrodinger Maestro version 2018.4. Molecular docking analysis revealed that surface protein targets AKT1, TNKS-2, MMP, and EGFR have the highest binding affinity towards the selected topoisomerase I inhibitor Irinotecan when compared to TNKS-1 and BRAF targets. The higher docking score of Irinotecan with extracellular colorectal cancer target proteins was discovered in this investigation.
Conclusion: Cancer is one of the most prevalent, lethal and risky malignant pathologies with an elevated prevalence and mortality rate worldwide. The current work will be more beneficial for rationalising the effective anticancer treatment according to the intensities of expression of the colon cancer target protein and for creating an optimum targeted drug delivery system of an anticancer agent to treat colon cancer.
Downloads
References
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M. Cancer incidence and mortality worldwide: sources, methods and major patterns in Globocan 2012. Int J Cancer. 2015 Mar 1;136(5):E359-86. doi: 10.1002/ijc.29210, PMID 25220842.
Siegel R, DeSantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):104-17. doi: 10.3322/caac.21220, PMID 24639052.
International WCRF. Available online: https://www.wcrf.org/int/cancer-facts-figures.
Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021 Oct 1;14(10):101174. doi: 10.1016/j.tranon.2021.101174, PMID 34243011.
Araghi M, Soerjomataram I, Jenkins M, Brierley J, Morris E, Bray F. Global trends in colorectal cancer mortality: projections to the year 2035. Int J Cancer. 2019 Jun 15;144(12):2992-3000. doi: 10.1002/ijc.32055, PMID 30536395.
Araghi M, Arnold M, Rutherford MJ, Guren MG, Cabasag CJ, Bardot A. Colon and rectal cancer survival in seven high-income countries 2010-2014: variation by age and stage at diagnosis (the ICBP SURVMARK-2 project). Gut. 2021 Jan 1;70(1):114-26. doi: 10.1136/gutjnl-2020-320625, PMID 32482683.
Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging. 2016 Jul 19;11:967-76. doi: 10.2147/CIA.S109285, PMID 27486317.
Pan P, Yu J, Wang LS. Colon cancer: what we eat. Surg Oncol Clin N Am. 2018 Apr 1;27(2):243-67. doi: 10.1016/j.soc.2017.11.002, PMID 29496088.
Testino G, Leone S, Sumberaz A, Borro P. Alcohol and cancer. Alcohol Clin Exp Res. 2015;39(11):2261. doi: 10.1111/acer.12858, PMID 26332802.
Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2000;18(5):1135. doi: 10.1200/JCO.2000.18.5.1135, PMID 10694567.
Geng F, Wang Z, Yin H, Yu J, Cao B. Molecular targeted drugs and treatment of colorectal cancer: recent progress and future perspectives. Cancer Biother Radiopharm. 2017 Jun 1;32(5):149-60. doi: 10.1089/cbr.2017.2210, PMID 28622036.
Ortega J, Vigil CE, Chodkiewicz C. Current progress in targeted therapy for colorectal cancer. Cancer Control. 2010 Jan;17(1):7-15. doi: 10.1177/107327481001700102, PMID 20010514.
Van Cutsem E, Cervantes A, Nordlinger B, Arnold D, ESMO Guidelines Working Group. Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25Suppl 3:iii1-9. doi: 10.1093/annonc/mdu260, PMID 25190710.
Alam W, Bouferraa Y, Haibe Y, Mukherji D, Shamseddine A. Management of colorectal cancer in the era of COVID-19: challenges and suggestions. Sci Prog. 2021 Apr;104(2):368504211010626. doi: 10.1177/00368504211010626, PMID 33878982.
Pointet AL, Taieb J. Cancro del colon. EMC-AKOS-Trattato di Medicina. 2017;19(1):1-7. doi: 10.1016/S1634-7358(16)81854-9.
McQuade RM, Bornstein JC, Nurgali K. Anti-colorectal cancer chemotherapy-induced diarrhoea: current treatments and side-effects. Int J Clin Med. 2014;05(7):393-406. doi: 10.4236/ijcm.2014.57054.
Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008 Mar 13;358(11):1160-74. doi: 10.1056/NEJMra0707704, PMID 18337605.
Folgueras AR, Pendas AM, Sanchez LM, Lopez Otin C. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol. 2004 Sep 1;48(5-6):411-24. doi: 10.1387/ijdb.041811af.
Metibemu DS, Oyeneyin OE, Omotoyinbo DE, Adeniran OY, Metibemu AO, Oyewale MB. Molecular docking and quantitative structure-activity relationship for the identification of novel phyto-inhibitors of matrix metalloproteinase-2. Sci Lett. 2020;8(2):61-8.
Roux PP, Topisirovic I. Signaling pathways involved in the regulation of mRNA translation. Mol Cell Biol. 2018 Jun 15;38(12):e00070-18. doi: 10.1128/MCB.00070-18, PMID 29610153.
Sithanandam G, Kolch W, Duh FM, Rapp UR. Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme-specific antibodies. Oncogene. 1990;5(12):1775-80. PMID 2284096.
Sithanandam G, Druck T, Cannizzaro LA, Leuzzi G, Huebner K, Rapp UR. B-raf and a B-raf pseudogene are located on 7q in man. Oncogene. 1992 Apr 1;7(4):795-9. PMID 1565476.
Li B, Liang J, Lu F, Zeng G, Zhang J, Ma Y. Discovery of novel inhibitor for Wnt/β-catenin pathway by tankyrase 1/2 structure-based virtual screening. Molecules. 2020 Apr 6;25(7):1680. doi: 10.3390/molecules25071680, PMID 32268564.
Liao HY, Da CM, Liao B, Zhang HH. Roles of matrix metalloproteinase-7 (MMP-7) in cancer. Clin Biochem. 2021 Jun 1;92:9-18. doi: 10.1016/j.clinbiochem.2021.03.003, PMID 33713636.
Ryu H, Nam KY, Kim HJ, Song JY, Hwang SG, Kim JS. Discovery of a novel triazolopyridine derivative as a tankyrase inhibitor. Int J Mol Sci. 2021 Jul 8;22(14):7330. doi: 10.3390/ijms22147330, PMID 34298950.
Wang YB, Shi Q, Li G, Zheng JH, Lin J, Qiu W. MicroRNA-488 inhibits progression of colorectal cancer via inhibition of the mitogen-activated protein kinase pathway by targeting claudin-2. Am J Physiol Cell Physiol. 2019 Jan 1;316(1):C33-47. doi: 10.1152/ajpcell.00047.2018, PMID 30207785.
Li R, Ma X, Song Y, Zhang Y, Xiong W, Li L. Anti‐colorectal cancer targets of resveratrol and biological molecular mechanism: analyses of network pharmacology, human and experimental data. J Cell Biochem. 2019 Jul;120(7):11265-73. doi: 10.1002/jcb.28404, PMID 30719773.
Srivastava A, Rai S, Bisht D, Sachan M, Jit BP, Srivastava S. Targeting the altered tyrosine kinases in colorectal cancer: from inhibitors to drugs. Inprotein Kinase Inhibitors 2022 Jan 1;361-91.
Black LE, Longo JF, Carroll SL. Mechanisms of receptor tyrosine-protein kinase ErbB-3 (ERBB3) action in human neoplasia. Am J Pathol. 2019;189(10):1898-912. doi: 10.1016/j.ajpath.2019.06.008, PMID 31351986.
Black LE, Longo JF, Carroll SL. Mechanisms of receptor tyrosine-protein kinase ErbB-3 (ERBB3) action in human neoplasia. Am J Pathol. 2019 Oct 1;189(10):1898-912. doi: 10.1016/j.ajpath.2019.06.008, PMID 31351986.
Yu H, Yue X, Zhao Y, Li X, Wu L, Zhang C. LIF negatively regulates tumor-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat Commun. 2014 Oct 17;5(1):5218. doi: 10.1038/ncomms6218, PMID 25323535.
Hernandez Borrero LJ, El-Deiry WS. Tumor suppressor p53: biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer. 2021 Aug 1;1876(1):188556. doi: 10.1016/j.bbcan.2021.188556, PMID 33932560.
Lazarev VF, Guzhova IV, Margulis BA. Glyceraldehyde-3-phosphate dehydrogenase is a multifaceted therapeutic target. Pharmaceutics. 2020 May 2;12(5):416. doi: 10.3390/pharmaceutics12050416, PMID 32370188.
Tang Z, Yuan S, Hu Y, Zhang H, Wu W, Zeng Z. Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-bromopyruvate propyl ester. J Bioenerg Biomembr. 2012 Feb;44(1):117-25. doi: 10.1007/s10863-012-9420-9, PMID 22350014.
He JX, Yang CH, Miao ZH. Poly(ADP-ribose) polymerase inhibitors as promising cancer therapeutics. Acta Pharmacol Sin. 2010 Sep;31(9):1172-80. doi: 10.1038/aps.2010.103, PMID 20676117.
Gao Y, Zhou S, Xu Y, Sheng S, Qian SY, Huo X. Nitric oxide synthase inhibitors 1400W and L-NIO inhibit angiogenesis pathway of colorectal cancer. Nitric Oxide. 2019 Feb 1;83:33-9. doi: 10.1016/j.niox.2018.12.008, PMID 30590117.
Mashimo M, Shimizu A, Mori A, Hamaguchi A, Fukushima K, Seira N. PARP14 regulates EP4 receptor expression in human colon cancer HCA-7 cells. Biochem Biophys Res Commun. 2022 Oct 1;623:133-9. doi: 10.1016/j.bbrc.2022.07.055, PMID 35914351.
Castro ED, Mathias PPM, Batista WL, Sato AYS, Toledo MS, de Almeida VT. Knockdown of the inducible nitric oxide synthase (NOS2) splicing variant S3 promotes autophagic cell death from nitrosative stress in SW480 human colon cancer cells. Cell Biol Int. 2022 Jan;46(1):158-69. doi: 10.1002/cbin.11717, PMID 34719858.
Doman AJ, Tommasi S, Perkins MV, McKinnon RA, Mangoni AA, Nair PC. Chemical similarities and differences among inhibitors of nitric oxide synthase, arginase and dimethylarginine dimethylaminohydrolase-1: implications for the design of novel enzyme inhibitors modulating the nitric oxide pathway. Bioorg Med Chem. 2022;72:116970. doi: 10.1016/j.bmc.2022.116970, PMID 36063653.
Tse AN, Carvajal R, Schwartz GK. Targeting checkpoint kinase 1 in cancer therapeutics. Clin Cancer Res. 2007;13(7):1955-60. doi: 10.1158/1078-0432.CCR-06-2793, PMID 17404075.
Bucher N, Britten CD. G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br J Cancer. 2008;98(3):523-8. doi: 10.1038/sj.bjc.6604208, PMID 18231106.
Sun J, Li M, Lin T, Wang D, Chen J, Zhang Y. Cell cycle arrest is an important mechanism of action of compound Kushen injection in the prevention of colorectal cancer. Sci Rep. 2022;12(1):4384. doi: 10.1038/s41598-022-08336-4. PMID 35288618.
Fujita KI, Kubota Y, Ishida H, Sasaki Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol. 2015;21(43):12234-48. doi: 10.3748/wjg.v21.i43.12234, PMID 26604633.
Falcone A, Ricci S, Brunetti I, Pfanner E, Allegrini G, Barbara C. Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. J Clin Oncol. 2007;25(13):1670-6. doi: 10.1200/JCO.2006.09.0928, PMID 17470860.
Si J, Zhao X, Gao S, Huang D, Sui M. Advances in delivery of irinotecan (CPT-11) active metabolite 7-ethyl-10-hydroxycamptothecin. Int J Pharm. 2019;568:118499. doi: 10.1016/j.ijpharm.2019.118499, PMID 31299338.
Stintzing S, Modest DP, Rossius L, Lerch MM, von Weikersthal LF, Decker T. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): a post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. Lancet Oncol. 2016;17(10):1426-34. doi: 10.1016/S1470-2045(16)30269-8, PMID 27575024.
Fan Y, Mansoor N, Ahmad T, Khan RA, Czejka M, Sharib S. Physiologically based pharmacokinetic modeling for predicting irinotecan exposure in human body. Oncotarget. 2017;8(29):48178-85. doi: 10.18632/oncotarget.18380, PMID 28636998.
Mullard A. Re-assessing the rule of 5, two decades on. Nat Rev Drug Discov. 2018;17(11):777. doi: 10.1038/nrd.2018.197, PMID 30374178.
Mahmoudi A, Jaafari MR, Ramezanian N, Gholami L, Malaekeh Nikouei B. BR2 and CyLoP1 enhance in vivo SN38 delivery using pegylated PAMAM dendrimers. Int J Pharm. 2019;564:77-89. doi: 10.1016/j.ijpharm.2019.04.037, PMID 30991135.
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Ostell J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research. 2016;44(14):6614-24. doi: 10.1093/nar/gkw569, PMID 27342282.
Kümper M, Hessenthaler S, Zamek J, Niland S, Pach E, Mauch C, Zigrino P. Loss of endothelial cell matrix metalloproteinase 14 reduces melanoma growth and metastasis by increasing tumor vessel stability. Journal of Investigative Dermatology. 2022;142(7):1923-33. doi: 10.1016/j.jid.2021.12.016, PMID 34968503.
Tanabe H, Suzuki T, Ohishi T, Isemura M, Nakamura Y, Unno K. Effects of epigallocatechin-3-gallate on matrix metalloproteinases in terms of its anticancer activity. Molecules. 2023;28(2):525. doi: 10.3390/molecules28020525, PMID 36677584.
Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2000;18(5):1135. doi: 10.1200/JCO.2000.18.5.1135, PMID 10694567.
Huang H, Park S, Zhang H, Park S, Kwon W, Kim E. Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo. J Exp Clin Cancer Res. 2021;40(1):114. doi: 10.1186/s13046-021-01895-w. PMID 33785035.
Saglam O, Garrett CR, Boulware D, Sayegh Z, Shibata D, Malafa M, Coppola D. Activation of the serine/threonine protein kinase AKT during the progression of colorectal neoplasia. Clinical Colorectal Cancer. 2007;6(9):652-6. doi: 10.3816/CCC.2007.n.034, PMID 17945038.
Kudryavtseva AV, Lipatova AV, Zaretsky AR, Moskalev AA, Fedorova MS, Rasskazova AS, Krasnov GS. Important molecular genetic markers of colorectal cancer. Oncotarget. 2016;7(33):53959-83. doi: 10.18632/oncotarget.9796, PMID 27276710.
Hussain MRM, Baig M, Mohamoud HSA, Ulhaq Z, Hoessli DC, Khogeer GS, Al-Aama JY. BRAF gene: from human cancers to developmental syndromes. Saudi Journal of Biological Sciences. 2015;22(4):359-73. doi: 10.1016/j.sjbs.2014.10.002, PMID 26150740.
Li B, Liang J, Lu F, Zeng G, Zhang J, Ma Y. Discovery of novel inhibitor for Wnt/β-catenin pathway by tankyrase 1/2 structure-based virtual screening. Molecules. 2020;25(7):1680. doi: 10.3390/molecules25071680, PMID 32268564.
Jang MK, Mashima T, Seimiya H. Tankyrase inhibitors target colorectal cancer stem cells via AXIN-dependent downregulation of c-KIT tyrosine Kinase Tankyrase. Mol Cancer Ther. 2020;19(3):765-76. doi: 10.1158/1535-7163.MCT-19-0668, PMID 31907221.
Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pK(a) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007;21(12):681-91. doi: 10.1007/s10822-007-9133-z, PMID 17899391.
Kumar TA, Ajay Kumar TV, Athavan AAS, Loganathan C, Saravanan K, Kabilan S, Parthasarathy V. Design, 3D QSAR modeling and docking of TGF-β type I inhibitors to target cancer. Comput Biol Chem. 2018;76:232-44. doi: 10.1016/j.compbiolchem.2018.07.011, PMID 30077902.
Balachandran P, V Ajay Kumar VA, T Parthasarathy V, Parthasarathy V. Screening of potential anticancer compounds from sargassum wightii to target breast cancer specific HER2 receptor using in-silico analysis. The Natural Products Journal. 2016;6(2):108-15. doi: 10.2174/2210315506666160218224112.
Kalirajan R, Sankar S, Jubie S, Gowramma B. Molecular docking studies and in-silico ADMET screening of some novel oxazine substituted 9-anilinoacridines as topoisomerase II inhibitors. Indian J Pharm Educ Res. 2017;51(1):110-5. doi: 10.5530/ijper.51.1.15.
Banks JL, Beard HS, Cao Y, Cho AE, Damm W, Farid R, Levy RM. Integrated modeling program, applied chemical theory (Impact). J Comput Chem. 2005;26(16):1752-80. doi: 10.1002/jcc.20292, PMID 16211539.
Muralikrishnan A, Kubavat J, Vasava M, Jupudi S, Biju N. Investigation of anti-sars cov-2 activity of some tetrahydro curcumin derivatives: an in silico study. Int J App Pharm. 2023;15(1):333-9. doi: 10.22159/ijap.2023v15i1.46288.
Martorana F, Motta G, Pavone G, Motta L, Stella S, Vitale SR, Vigneri P. AKT inhibitors: new weapons in the fight against breast cancer?. Frontiers in Pharmacology. 2021;12:662232. doi: 10.3389/fphar.2021.662232, PMID 33995085.
Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Mainz DT. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry. 2006;49(21):6177-96. doi: 10.1021/jm051256o, PMID 17034125.
Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004 Dec;1(4):337-41. doi: 10.1016/j.ddtec.2004.11.007. PMID: 24981612.
Anonymous. Schrodinger release. New York: QikProp, Schrodinger, LLC; 2018.
Anonymous. Schrodinger release. Impact. Protein Preparation Wizard; 2018.
Kalirajan R, Sankar S, Jubie S, Gowramma B. Molecular docking studies and in-silico ADMET screening of some novel oxazine substituted 9-anilinoacridines as topoisomerase II inhibitors. Indian J Pharm Educ Res. 2017;51(1):110-5. doi: 10.5530/ijper.51.1.15.
Wary, Rakesh, Sivaraj, Sarany A, Gurukarthikeyana RKP, Mari S, Suraja GD, Kannayiram Gomathi. Chitosan gallic acid microsphere incorporated collagen matrix for chronic wounds: Biophysical and biochemical characterization. Int J Pharm Pharm Sci. 2014;6:94-100.
National Cancer Institute (NCI). Akt inhibitor MK2206. In: Treating patients with previously treated colon or rectal cancer that is metastatic or locally advanced and cannot be removed by surgery; 2019. Available from: https://beta.clinicaltrials.gov/study/NCT01802320.
Published
How to Cite
Issue
Section
Copyright (c) 2023 MAHALEKSHMI V., BALAKRISHNAN N., AJAY KUMAR T. V., PARTHASARATHY V.
This work is licensed under a Creative Commons Attribution 4.0 International License.