OPTIMIZATION AND CHARACTERIZATION OF ESSENTIAL OILS FORMULATION FOR ENHANCED STABILITY AND DRUG DELIVERY SYSTEM OF MEFLOQUINE

Authors

  • PRIYADARSHINI MOHAPATRA Department of Pharmaceutics, MVP Samaj’s College of Pharmacy, Nashik, Maharashtra-422002, India
  • NATARAJAN CHANDRASEKARAN Department of Pharmaceutics, MVP Samaj’s College of Pharmacy, Nashik, Maharashtra-422002, India https://orcid.org/0000-0002-0586-134X

DOI:

https://doi.org/10.22159/ijap.2023v15i5.48624

Keywords:

Essential oil formulation, Microemulsion, Nanoemulsion, Garlic oil nanoemulsion, Mefloquine delivery system, Release kinetics, Oral bioavilability

Abstract

Objective: This work aims to choose suitable essential oil formulations to improve the bioavailability and long-term aqueous stability of mefloquine in drug delivery systems.

Methods: Oil phases of pomegranate oil, black cumin seed oil, and garlic oil. To choose the proper oil and surfactant for creating pseudo-ternary phase diagrams, cremophore EL, tween®20 and tween®80 (surfactants), and brij 35 (co-surfactants) were used in a variety of concentrations and combinations (Smix). Mefloquine was estimated to be soluble in a variety of oils, surfactants, and co-surfactants. Drug solubility, drug release research, thermodynamic stability, mean hydrodynamic size and zeta potential.

Results: Garlic with smix of cremophore EL and brij 35, Pomegranate with Tween 20, and Black cumin seed oil with Tween 80 showed the highest solubilization and emulsification capabilities and were further investigated using ternary phase diagrams. When combined with the co-surfactants under investigation, cremophore EL demonstrated a greater self-emulsification zone than tween® 80 and tween 20. Garlic oil, cremophore EL, and brij 35 nanoemulsion showed smaller size, greater zeta potential, less emulsification time, high transmittance, and better drug solubility than microemulsion formulations on especially those made with tween®20 and tween 80. Mefloquine loaded garlic oil nanoemulsion showed considerably low release in body fluid (32.48%) and a good release in intestinal fluid (82.78%) by 12 h in a drug release study.

Conclusion: Garlic oil as the oil phase and a mixture of cremophore EL and brij 35 as the surfactant phase are ideal surfactants and co-surfactant for mefloquine loaded garlic oil nanoemulsion with greater drug release in release kinetics investigation.

Downloads

Download data is not yet available.

References

REFERENCES

Li B, Tan T, Chu W, Zhang Y, Ye Y, Wang S. Co-delivery of paclitaxel (PTX) and docosahexaenoic acid (DHA) by targeting lipid nanoemulsions for cancer therapy. Drug Deliv. 2022;29(1):75-88. doi: 10.1080/10717544.2021.2018523, PMID 34964421.

Begum A, Uma Rani G. Formulation and evaluation of floating drug delivery system of repaglinide. Vol. 16; 2023. doi: 10.22159/ajpcr.2023v16i6.47271.

Zhao P, Tang X, Huang Y. Teaching new tricks to old dogs: a review of drug repositioning of disulfiram for cancer nanomedicine. View. 2021;2(4):20200127. doi: 10.1002/VIW.20200127.

Ahmad MZ, Ahmad J, Aslam M, Khan MA, Alasmary MY, Abdel Wahab BA. Repurposed drug against Covid-19: nanomedicine as an approach for finding new hope in old medicines. Nano Express. 2021;2(2). doi: 10.1088/2632-959X/abffed.

Prasher P, Sharma M. Nanotechnology-based self-sterilizing surfaces and their potential in combating Covid-19. Nanomedicine (Lond). 2021;16(14):1183-6. doi: 10.2217/nnm-2021-0079, PMID 33973804.

Sarvan VH. Types and application of pharmaceutical nanotechnology: a review. Int J Curr Pharm Res. 2023 May 15;14-8.

Das S, Biswas P, Dutta C, Biswas DS. Fabrication and release kinetics of piperazine citrate tablets using natural gum. Vol. 16; 2023. doi: 10.22159/ajpcr.2023v16i6.47323.

Seal T, Pillai B, Chaudhuri K. Effect of cooking methods on total phenolics and antioxidant activity of selected wild edible plants. Int J Pharm Pharm Sci. 2023 Jul 1:20-6.

Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci. 2004;110(1-2):49-74. doi: 10.1016/j.cis.2004.02.003, PMID 15142823.

Guo Y, Wu Z, Shen S, Guo R, Wang J, Wang W. Nanomedicines reveal how PBOV1 promotes hepatocellular carcinoma for effective gene therapy. Nat Commun. 2018;9(1):3430. doi: 10.1038/s41467-018-05764-7, PMID 30143633.

Li YH, Yang SL, Zhang GF, Wu JC, Gong LL, Ming Zhong. Mefloquine targets β-catenin pathway and thus can play a role in the treatment of liver cancer. Microb Pathog. 2018;118:357-60. doi: 10.1016/j.micpath.2018.03.042, PMID 29578061.

Kucharski DJ, Jaszczak MK, Boraty PJ. A review of modifications of quinoline antimalarials; 2022.

Weinke T, Trautmann M, Held T, Weber G, Eichenlaub D, Fleischer K. Neuropsychiatric side effects after the use of mefloquine. Am J Trop Med Hyg. 1991;45(1):86-91. doi: 10.4269/ajtmh.1991.45.86, PMID 1867351.

Lundstrom Stadelmann B, Rufener R, IJP HA. Drugs and drug resistance drug repurposing applied: activity of the antimalarial me floquine against Echinococcus multilocularis (Jun); 2020.

Xu X, Wang J, Han K, Li S, Xu F, Yang Y. Antimalarial drug mefloquine inhibits nuclear factor kappa B signaling and induces apoptosis in colorectal cancer cells. Cancer Sci. 2018;109(4):1220-9. doi: 10.1111/cas.13540, PMID 29453896.

Çalıs S, Ozturk Atar K, Arslan FB, Eroglu H, Çapan Y. Nanopharmaceuticals as drug-delivery systems. Nanocarriers Drug Deliv. 2019:133-54.

Ashaolu TJ. Nanoemulsions for health, food, and cosmetics: a review. Environ Chem Lett. 2021;19(4):3381-95. doi: 10.1007/s10311-021-01216-9, PMID 33746662.

Mcclements DJ, Jafari SM. General aspects of nanoemulsions and their formulation. Elsevier Inc. 2018. p. 3-20. doi: 10.1016/B978-0-12-811838-2.00001-1.

Fardous J, Omoso Y, Joshi A, Yoshida K, Patwary MKA, Ono F. Development and characterization of gel-in-water nanoemulsion as a novel drug delivery system. Mater Sci Eng C Mater Biol Appl. 2021;124:112076. doi: 10.1016/j.msec.2021.112076. PMID 33947568.

Alhajamee M, Marai K, Al Abbas SMN, Homayouni Tabrizi M. Co-encapsulation of curcumin and tamoxifen in lipid-chitosan hybrid nanoparticles for cancer therapy. Mater Technol. 2022;37(9):1183-94. doi: 10.1080/10667857.2021.1926811.

Abrar M, Ayub Y, Nazir R, Irshad M, Hussain N, Saleem Y. Garlic and ginger essential oil-based neomycin nanoemulsions as effective and accelerated treatment for skin wounds’ healing and inflammation: in vivo and in vitro studies. Saudi Pharm J. 2022 Dec;30(12):1700-9. doi: 10.1016/j.jsps.2022.09.015.

Ganta S, Singh A, Rawal Y, Cacaccio J, Patel NR, Kulkarni P. Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer. Drug Deliv. 2016;23(3):968-80. doi: 10.3109/10717544.2014.923068, PMID 24901206.

Izadiyan Z, Basri M, Fard Masoumi HR, Abedi Karjiban R, Salim N, Shameli K. Modeling and optimization of nanoemulsion containing sorafenib for cancer treatment by response surface methodology. Chem Cent J. 2017;11(1):21. doi: 10.1186/s13065-017-0248-6, PMID 28293282.

Yang W, Veroniaina H, Qi X, Chen P, Li F, Ke PC. Soft and condensed nanoparticles and nanoformulations for cancer drug delivery and repurpose. Adv Ther (Weinh). 2020;3(1):1900102.

Noor A. A data-driven medical decision framework for associating adverse drug events with drug-drug interaction mechanisms. J Healthc Eng. 2022;2022:1-7. doi: 10.1155/2022/9132477.

Mathew C, Lal N, SL, Tra, Varkey J. Antioxidant, anticancer and molecular docking studiesof novel 5-benzylidene substituted rhodanine derivatives. Int J Pharm Pharm Sci. 2023 Jul 1:7-19.

Sanchez Lopez E, Guerra M, Dias Ferreira J, Lopez Machado A, Ettcheto M, Cano A. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials (Basel). 2019;9(6). doi: 10.3390/nano9060821, PMID 31159219.

Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today. 2020;25(7):1174-88. doi: 10.1016/j.drudis.2020.04.013, PMID 32344042.

Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chandrasekaran N. Nanoemulsion of eucalyptus oil and its larvicidal activity against culex quinquefasciatus. Bull Entomol Res. 2014;104(3):393-402. doi: 10.1017/S0007485313000710, PMID 24401169.

Mishra P, Jerobin J, Thomas J, Mukherjee A, Chandrasekaran N. Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita. Biotechnology and Applied Biochemistry. 2014;61(5):611-9.

Sugumar S, Ghosh V, Nirmala MJ, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: antibacterial activity against Staphylococcus aureus and wound healing activity in wistar rats. Ultrason Sonochem. 2014;21(3):1044-9. doi: 10.1016/j.ultsonch.2013.10.021, PMID 24262758.

Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N. Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against culex quinquefasciatus. Pest Manag Sci. 2012;68(2):158-63. doi: 10.1002/ps.2233, PMID 21726037.

Ghosh V, Mukherjee A, Chandrasekaran N. Formulation and characterization of plant essential oil based nanoemulsion: evaluation of its larvicidal activity against Aedes aegypti formulation and characterization of plant essential oil based nanoemulsion: evaluation of its larvicidal activity aga. Asian Journal of Chemistry. 2013;25 Suppl:S321-S323.

Anwer MK, Jamil S, Ibnouf EO, Shakeel F. Enhanced antibacterial effects of clove essential oil by nanoemulsion. J Oleo Sci. 2014;63(4):347-54. doi: 10.5650/jos.ess13213, PMID 24599109.

Date AA, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Review. 2010;5:1595-616.

Journal A, Issue S. Formulation and characterization of plant essential oil based nanoemulsion: evaluation of its larvicidal activity against Aedes aegypti. Asian Journal of Chemistry. 2013;25:18-20.

Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N. Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J Nanosci Nanotechnol. 2013;13(1):114-22. doi: 10.1166/jnn.2013.6701, PMID 23646705.

Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123-7. doi: 10.1007/s13205-014-0214-0, PMID 28324579.

Nicastro HL, Ross SA, Milner JA. Garlic and onions: their cancer prevention properties. Cancer Prev Res (Phila). 2015;8(3):181-9. doi: 10.1158/1940-6207.CAPR-14-0172, PMID 25586902.

Sharma P, McClees SF, Afaq F. Pomegranate for prevention and treatment of cancer: an update. Molecules. 2017;22(1):1-18. doi: 10.3390/molecules22010177, PMID 28125044.

Farshi P, Tabibiazar M, Ghorbani M, Hamishehkar H. Evaluation of antioxidant activity and cytotoxicity of cumin seed oil nanoemulsion stabilized by sodium caseinate-guar gum. Tabriz University of Medical Sciences. 2017;23(4):293–300. doi: 10.15171/PS.2017.43.

Ragavan G, Muralidaran Y, Sridharan B, Nachiappa Ganesh R, Viswanathan P. Evaluation of garlic oil in nano-emulsified form: optimization and its efficacy in high-fat diet induced dyslipidemia in wistar rats. Food Chem Toxicol. 2017;105:203-13. doi: 10.1016/j.fct.2017.04.019, PMID 28428086.

Alkhatib MH, Binsiddiq BM, Backer WS. in vivo evaluation of the anticancer activity of a water-in-garlic oil nanoemulsion loaded with docetaxel. Int J Pharm Sci Res. 2017;8(12):5373-9.

Plaza Oliver M, Santander Ortega MJ, Lozano MV. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv Transl Res. 2021;11(2):471-97. doi: 10.1007/s13346-021-00908-7, PMID 33528830.

Ganta S, Talekar M, Singh A, Coleman TP, Amiji MM. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPS PharmSciTech. 2014;15(3):694-708. doi: 10.1208/s12249-014-0088-9, PMID 24510526.

Nabila N, Suada NK, Denis D, Yohan B, Adi AC, Veterini AS. Antiviral action of curcumin encapsulated in nanoemulsion against four serotypes of dengue virus. Pharm Nanotechnol. 2020;8(1):54-62. doi: 10.2174/2211738507666191210163408, PMID 31858909.

Periasamy VS, Athinarayanan J, Alshatwi AA. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason Sonochem. 2016;31:449-55. doi: 10.1016/j.ultsonch.2016.01.035, PMID 26964971.

Alkhatib MH, Binsiddiq BM, Backer WS. In vivo evaluation of the anticancer activity of a water-in-garlic oil nanoemulsion loaded with docetaxel. Int J Pharm Sci Res. 2017;8(12):5373-9.

Press D. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro; 2015. p. 67-75.

El-readi MZ. Review article cancer nanomedicine: a new era of successful targeted therapy. Vol. 2019; 2019.

Ghosh V, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason Sonochem. 2013;20(1):338-44. doi: 10.1016/j.ultsonch.2012.08.010, PMID 22954686.

Jerobin J, Sureshkumar RS, Anjali CH, Mukherjee A, Chandrasekaran N. Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym. 2012;90(4):1750-6. doi: 10.1016/j.carbpol.2012.07.064, PMID 22944443.

Ye H, He X, Feng X. Developing neobavaisoflavone nanoemulsion suppresses lung cancer progression by regulating tumor microenvironment. Biomed Pharmacother. 2020;129(May):110369. doi: 10.1016/j.biopha.2020.110369, PMID 32563983.

Satyal P, Craft JD, Dosoky NS, Setzer WN. The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (allium vineale). Foods. 2017;6(8):1-10. doi: 10.3390/foods6080063, PMID 28783070.

Dziri S, Casabianca H, Hanchi B, Hosni K. Composition of garlic essential oil (Allium sativum L.) as influenced by drying method. J Essent Oil Res. 2014;26(2):91-6.

Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer. 2007;120(12):2527-37. doi: 10.1002/ijc.22709, PMID 17390371.

Ghosh V, Mukherjee A, Chandrasekaran N. Mustard oil microemulsion formulation and evaluation of bactericidal activity. Int J Pharm Pharm Sci. 2012;4(4):497-500.

Zheng Y, Xie Q, Wang H, Hu Y, Ren B, Li X. Recent advances in plant polysaccharide-mediated Nano drug delivery systems. Int J Biol Macromol. 2020;165(B):2668-83. doi: 10.1016/j.ijbiomac.2020.10.173, PMID 33115646.

Mondal A, Banerjee S, Bose S, Mazumder S, Haber RA, Farzaei MH. Garlic constituents for cancer prevention and therapy: from phytochemistry to novel formulations. Pharmacol Res. 2022;175:105837. doi: 10.1016/j.phrs.2021.105837. PMID 34450316.

Cao Y, Liu J, Ma H, Bai J, Qi C. Novel nano drug delivery systems for hepatic tumor. SPIE Proceedings. Eighth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2009). 2009;7519:751912. doi: 10.1117/12.844928.

Liu Y, Chen S, Xue R, Zhao J, Di M. Mefloquine effectively targets gastric cancer cells through phosphatase-dependent inhibition of PI3K/Akt/mTOR signaling pathway. Biochem Biophys Res Commun. 2016;470(2):350-5. doi: 10.1016/j.bbrc.2016.01.046. PMID 26780727.

Yan KH, Lin YW, Hsiao CH, Wen YC, Lin KH, Liu CC. Mefloquine induces cell death in prostate cancer cells and provides a potential novel treatment strategy in vivo. Oncol Lett. 2013;5(5):1567-71. doi: 10.3892/ol.2013.1259, PMID 23759954.

Published

07-09-2023

How to Cite

MOHAPATRA, P., & CHANDRASEKARAN, N. (2023). OPTIMIZATION AND CHARACTERIZATION OF ESSENTIAL OILS FORMULATION FOR ENHANCED STABILITY AND DRUG DELIVERY SYSTEM OF MEFLOQUINE. International Journal of Applied Pharmaceutics, 15(5), 145–154. https://doi.org/10.22159/ijap.2023v15i5.48624

Issue

Section

Original Article(s)