ADVANCEMENTS IN SCAFFOLD-BASED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE OVERVIEW AND RECENT DEVELOPMENTS

Authors

DOI:

https://doi.org/10.22159/ijap.2023v15i6.48645

Keywords:

Engineering, Delivery, Implant, Novel, Regeneration, Scaffold

Abstract

In the field of tissue engineering, there is a growing focus on developing strategies for the reconstruction of dysfunctional tissue models through the transplantation of cells using stable scaffolds and biomolecules. Recently, significant attention has been focused on the expansion of dynamically responsive platforms that mimic the extracellular environment, leading to the integration of tissues and organs. The successful regeneration or restoration of tissues relies on the presence of a scaffold that serves as a temporary framework for cell proliferation and extracellular matrix formation. Various methods, including solvent abstraction, freeze drying/abstraction/gelation, particle compression, and phase reversal, can be employed to fabricate scaffolds. In the context of drug delivery systems utilizing polymeric scaffolds, careful consideration of optimal parameters such as drug loading capacity is crucial. Biodegradable polymers and bioceramics are commonly utilized to fabricate scaffolds. This review provides an overview of the significance of scaffolds, the materials employed, and the fabrication techniques utilized in the expansion of scaffolds for sustained drug delivery and tissue engineering applications.

Downloads

Download data is not yet available.

References

Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86-168. doi: 10.1016/j.progpolymsci.2015.02.004. PMID 27022202.

Ketchum L, Hess JR, Hiippala S. Indications for early fresh frozen plasma, cryoprecipitate, and platelet transfusion in trauma. J Trauma. 2006;60(6)Suppl:S51-8. doi: 10.1097/01.ta.0000199432.88847.0c. PMID 16763482.

Partap S, Plunkett N, O’brien F. Bioreactors in tissue engineering. Tissue Eng. 2010:323-37. doi: 10.1089/ten.tea.2009.0404.

Raja B, Reddy KN, Swetha P. Formulation and evaluation of chitosan nanoparticles containing zidovudine for the target delivery into the brain. Indian J Res Pharm Biotechnol. 2017 Mar 1;5(2):134-9.

O’brien FJ. Biomaterials and scaffolds for tissue engineering. Mater Today. 2011;14(3):88-95. doi: 10.1016/S1369-7021(11)70058-X.

Freed LE, Vunjak Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (NY). 1994;12(7):689-93. doi: 10.1038/nbt0794-689, PMID 7764913.

Patel H, Bonde M, Srinivasan G. Biodegradable polymer scaffold for tissue engineering. Trends Biomater Artif Organs. 2011;25:20-9. doi: 10.1177/097168581102500103.

Chen Y, Dong X, Shafiq M, Myles G, Radacsi N, Mo X. Recent advancements on three-dimensional electrospun nanofiber scaffolds for tissue engineering. Adv Fiber Mater. 2022;4(5):959-86. doi: 10.1007/s42765-022-00170-7.

Biru EI, Necolau MI, Zainea A, Iovu H. Graphene oxide–protein-based scaffolds for tissue engineering: recent advances and applications. Polymers. 2022;14(5):1032. doi: 10.3390/polym14051032, PMID 35267854.

Mohammadalizadeh Z, Bahremandi Toloue E, Karbasi S. Synthetic-based blended electrospun scaffolds in tissue engineering applications. J Mater Sci. 2022;57(6):4020-79. doi: 10.1007/s10853-021-06826-w.

Bahremandi Toloue E, Mohammadalizadeh Z, Mukherjee S, Karbasi S. Incorporation of inorganic bioceramics into electrospun scaffolds for tissue engineering applications: a review. Ceram Int. 2022;48(7):8803-37. doi: 10.1016/j.ceramint.2021.12.125.

Yang Q, Peng J, Xiao H, Xu X, Qian Z. Polysaccharide hydrogels: functionalization, construction and served as scaffold for tissue engineering. Carbohydr Polym. 2022;278:118952. doi: 10.1016/j.carbpol.2021.118952, PMID 34973769.

Gu Z, Huang K, Luo Y, Zhang L, Kuang T, Chen Z. Double network hydrogel for tissue engineering. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(6):e1520. doi: 10.1002/wnan.1520, PMID 29664220.

Libro R, Bramanti P, Mazzon E. The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Exp Ther Med. 2017;14(4):3355-68. doi: 10.3892/etm.2017.4939, PMID 29042919.

Denry I, Kuhn LT. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater. 2016;32(1):43-53. doi: 10.1016/j.dental.2015.09.008, PMID 26423007.

Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H. Alginate-based scaffolds for cartilage tissue engineering: a review. Int J Polym Mater Polym Biomater. 2020;69(4):230-47. doi: 10.1080/00914037.2018.1562924.

Chen Y, Xu W, Shafiq M, Song D, Wang T, Yuan Z. Injectable nanofiber microspheres modified with metal phenolic networks for effective osteoarthritis treatment. Acta Biomater. 2023;157:593-608. doi: 10.1016/j.actbio.2022.11.040, PMID 36435438.

Lin F, Li Y, Cui W. Injectable hydrogel microspheres in cartilage repair. Biomed Technol. 2023;1:18-29. doi: 10.1016/j.bmt.2022.11.002.

Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S. A review of key challenges of electrospun scaffolds for tissue‐engineering applications. J Tissue Eng Regen Med. 2016;10(9):715-38. doi: 10.1002/term.1978, PMID 25619820.

Vaquette C, Pilipchuk SP, Bartold PM, Hutmacher DW, Giannobile WV, Ivanovski S. Tissue-engineered constructs for periodontal regeneration: current status and future perspectives. Adv Healthc Mater. 2018;7(21):e1800457. doi: 10.1002/adhm.201800457, PMID 30146758.

Hasan A, Soliman S, El Hajj F, Tseng YT, Yalcin HC, Marei HE. Fabrication and In vitro characterization of a tissue-engineered PCL-PLLA heart valve. Sci Rep. 2018;8(1):81-7. doi: 10.1038/s41598-018-26452-y, PMID 29844329.

Nie X, Wang DA. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells. Biomater Sci. 2018;6(11):2798-811. doi: 10.1039/c8bm00772a, PMID 30229775.

Delaey J, De Vos L, Koppen C, Dubruel P, Van Vlierberghe S, Van den Bogerd B. Tissue engineered scaffolds for corneal endothelial regeneration: a material’s perspective. Biomater Sci. 2022;10(10):2440-61. doi: 10.1039/d1bm02023d, PMID 35343525.

Chimerad M, Barazesh A, Zandi M, Zarkesh I, Moghaddam A, Borjian P. Tissue engineered scaffold fabrication methods for medical applications. Int J Polym Mater Polym Biomater. 2022:1-25. doi: 10.1080/00914037.2022.2101112.

Garcia AG. Multiscale analysis of multi-layered tissues constructs: interfaces in the musculoskeletal system based on tissue engineered osteotendinous junctions. Universite de Technologie de Compiegne; 2019.

O’Leary C, Cavanagh B, Unger RE, Kirkpatrick CJ, O’Dea S, O’Brien FJ. The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold. Biomaterials. 2016;85:111-27. doi: 10.1016/j.biomaterials.2016.01.065, PMID 26871888.

Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B. Tissue engineered skin substitutes. Cell biology and translational medicine. Stem Cells Bio-Mater Tissue Eng. 2018;3:143-88. doi: 10.1007/978-3-319-44687-3_7.

Ram Liebig G, Bednarz J, Stuerzebecher B, Fahlenkamp D, Barbagli G, Romano G. Regulatory challenges for autologous tissue engineered products on their way from bench to bedside in Europe. Adv Drug Deliv Rev. 2015;82-83:181-91. doi: 10.1016/j.addr.2014.11.009, PMID 25446139.

Ahad HA, Haranath C, Pradeepkumar B, Vinay C, Reddy CYCS, Sajid MS. Organ transplantation, pros, cons, and illustrations: a basic awareness to the public. Abasyn J Life Sci. 2021;4:168-74.

Maimoon S, Reddy KN, Swetha P. RP-HPLC method development and validation for simultaneous estimation of amlodipine besylate and telmisartan in tablet dosage form. Indian J Res Pharm Biotechnol. 2017;5(1):74.

Papantoniou I, Sonnaert M, Geris L, Luyten FP, Schrooten J, Kerckhofs G. Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography. Tissue Eng Part C Methods. 2014;20(3):177-87. doi: 10.1089/ten.TEC.2013.0041, PMID 23800097.

Cohen BP, Hooper RC, Puetzer JL, Nordberg R, Asanbe O, Hernandez KA. Long-term morphological and microarchitectural stability of tissue-engineered, patient-specific auricles in vivo. Tissue Eng Part A. 2016;22(5-6):461-8. doi: 10.1089/ten.TEA.2015.0323, PMID 26847742.

Moussa DG, Aparicio C. Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. J Tissue Eng Regen Med. 2019;13(1):58-75. doi: 10.1002/term.2769, PMID 30376696.

Serrano Aroca A, Cano Vicent A, Serra RS, El-Tanani M, Aljabali A, Tambuwala MM. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Materials Today Bio 2022:100412. doi: 10.1016/j. mtbio.2022.100412.

Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and synthetic polymers for bone scaffolds optimization. Polymers. 2020;12(4):905. doi: 10.3390/polym12040905, PMID 32295115.

Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds for bone regeneration. J Sci Adv Mater Devices. 2020;5(1):1-9. doi: 10.1016/j.jsamd.2020.01.007.

Wu S, Liu X, Yeung KWK, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014;80:1-36. doi: 10.1016/j.mser.2014.04.001.

Spicer CD. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem. 2020;11(2):184-219. doi: 10.1039/C9PY01021A.

Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012;4(3):035005. doi: 10.1088/1758-5082/4/3/035005, PMID 22914604.

Griffin DR, Archang MM, Kuan CH, Weaver WM, Weinstein JS, Feng AC. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat Mater. 2021;20(4):560-9. doi: 10.1038/s41563-020-00844-w, PMID 33168979.

Laurent CP, Vaquette C, Liu X, Schmitt JF, Rahouadj R. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical characterisation. J Biomater Appl. 2018;32(9):1276-88. doi: 10.1177/0885328218757064, PMID 29409376.

Gupta V, Khan Y, Berkland CJ, Laurencin CT, Detamore MS. Microsphere-based scaffolds in regenerative engineering. Annu Rev Biomed Eng. 2017;19:135-61. doi: 10.1146/annurev-bioeng-071516-044712, PMID 28633566.

Pravdin SF, Berdyshev VI, Panfilov AV, Katsnelson LB, Solovyova O, Markhasin VS. Mathematical model of the anatomy and fibre orientation field of the left ventricle of the heart. Biomed Eng OnLine. 2013;12:54. doi: 10.1186/1475-925X-12-54, PMID 23773421.

Ke H, Yang H, Zhao Y, Li T, Xin D, Gai C. 3D gelatin microsphere scaffolds promote functional recovery after spinal cord hemisection in rats. Adv Sci (Weinh). 2023;10(3):e2204528. doi: 10.1002/advs.202204528, PMID 36453595.

Reddy KR, Swetha P, Reddy R. Formulation and evaluation of colon targeted oral drug delivery system for meloxicam. Int J Innov Pharm Sci Res. 2014 Apr 9;2(4):777-91. doi: 10.20542/ijipsr.2014.2.4.004.

Mourino V, Cattalini JP, Roether JA, Dubey P, Roy I, Boccaccini AR. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opin Drug Deliv. 2013;10(10):1353-65. doi: 10.1517/17425247.2013.808183, PMID 23777443.

da Costa KJR, Passos JJ, Gomes AD, Sinisterra RD, Lanza CR, Cortes ME. Effect of testosterone incorporation on cell proliferation and differentiation for polymer–bioceramic composites. J Mater Sci Mater Med. 2012;23(11):2751-9. doi: 10.1007/s10856-012-4733-0, PMID 22886580.

Sicari BM, Rubin JP, Dearth CL, Wolf MT, Ambrosio F, Boninger M. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med. 2014;6(234):234ra58. doi: 10.1126/scitranslmed.3008085, PMID 24786326.

Corona BT, Greising SM. Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration. Biomaterials. 2016;104:238-46. doi: 10.1016/j.biomaterials.2016.07.020, PMID 27472161.

Prasad A, Sankar MR, Katiyar V. State of art on solvent casting particulate leaching method for orthopedic scaffoldsfabrication. Mater Today Proc. 2017;4(2):898-907. doi: 10.1016/j.matpr.2017.01.101.

Thadavirul N, Pavasant P, Supaphol P. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. J Biomed Mater Res A. 2014;102(10):3379-92. doi: 10.1002/jbma.35010, PMID 24132871.

Costantini M, Barbetta A. Gas foaming technologies for 3D scaffold engineering. Functional 3D tissue engineering scaffolds. Elsevier; 2018. p. 127-49. doi: 10.1016/B978-0-08-100979-8.00007-7.

Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021;174:504-34. doi: 10.1016/j.addr.2021.05.007, PMID 33991588.

Kim G, Kim W. Highly porous 3D nanofiber scaffold using an electrospinning technique. J Biomed Mater Res B Appl Biomater. 2007;81(1):104-10. doi: 10.1002/jbm.b.30642, PMID 16924612.

Owen R, Sherborne C, Evans R, Reilly GC, Claeyssens F. Combined porogen leaching and emulsion templating to produce bone tissue engineering scaffolds. Int J Bioprint. 2020;6(2):265. doi: 10.18063/ijb.v6i2.265, PMID 32782992.

Zwicker P, Schmidt T, Hornschuh M, Lode H, Kramer A, Muller G. In vitro response of THP-1 derived macrophages to antimicrobially effective PHMB-coated Ti6Al4V alloy implant material with and without contamination with S. epidermidis and P. aeruginosa. Biomater Res. 2022;26(1):1. doi: 10.1186/s40824-021-00247-1, PMID 35000621.

Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG. Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Control Release. 2010;143(1):95-103. doi: 10.1016/j.jconrel.2009.12.009, PMID 20006660.

Tian H, He J. Cellulose as a scaffold for self-assembly: from basic research to real applications. Langmuir. 2016;32(47):12269-82. doi: 10.1021/acs.langmuir.6b02033, PMID 27403881.

Hoque ME, Chuan YL, Pashby I. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers. 2012;97(2):83-93. doi: 10.1002/bip.21701, PMID 21830198.

Ben-Arfa BAE, Pullar RC. A comparison of bioactive glass scaffolds fabricated ‎by robocasting from powders made by sol–gel and melt-quenching methods. Processes. 2020;8(5):615. doi: 10.3390/pr8050615.

Duarte ARC, Mano JF, Reis RL. Supercritical phase inversion of starch-poly(ε-caprolactone) for tissue engineering applications. J Mater Sci Mater Med. 2010;21(2):533-40. doi: 10.1007/s10856-009-3909-8, PMID 19842016.

Chen Z, Song Y, Zhang J, Liu W, Cui J, Li H. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;72:341-51. doi: 10.1016/j.msec.2016.11.070, PMID 28024596.

Fereshteh Z. Freeze-drying technologies for 3D scaffold engineering. Functional 3D tissue engineering scaffolds. Elsevier; 2018. p. 151-74. doi: 10.1016/B978-0-08-100979-8.00008-9.

Shamloo A, Kamali A, Bahrani Fard MR. Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by the freeze-gelation method. Mater Res Express 2019;6(11). doi: 10.1088/2053-1591/ab43ee.

Barui S, Chatterjee S, Mandal S, Kumar A, Basu B. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: experimental and computational analysis. Mater Sci Eng C Mater Biol Appl. 2017;70(1):812-23. doi: 10.1016/j.msec.2016.09.040, PMID 27770959.

Baumann K. Phase separation in stress resistance. Nat Rev Mol Cell Biol. 2022;23(4):229. doi: 10.1038/s41580-022-00471-0, PMID 35260832.

Terakawa M. Femtosecond laser processing of biodegradable polymers. Appl Sci. 2018;8(7):1123. doi: 10.3390/app8071123.

Aoki K, Saito N. Biodegradable polymers as drug delivery systems for bone regeneration. Pharmaceutics. 2020;12(2):95. doi: 10.3390/pharmaceutics12020095, PMID 31991668.

Calori IR, Braga G, de Jesus PdCC, Bi H, Tedesco AC. Polymer scaffolds as drug delivery systems. Eur Polym J. 2020;129. doi: 10.1016/j.eurpolymj.2020.109621.

Lee D, Wufuer M, Kim I, Choi TH, Kim BJ, Jung HG. Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci Rep. 2021;11(1):746. doi: 10.1038/s41598-020-80608-3. PMID 33436904.

Dou DD, Zhou G, Liu HW, Zhang J, Liu ML, Xiao XF. Sequential releasing of VEGF and BMP-2 in hydroxyapatite collagen scaffolds for bone tissue engineering: design and characterization. Int J Biol Macromol. 2019;123:622-8. doi: 10.1016/j.ijbiomac.2018.11.099, PMID 30447364.

Mahanta AK, Senapati S, Paliwal P, Krishnamurthy S, Hemalatha S, Maiti P. Nanoparticle-induced controlled drug delivery using chitosan-based hydrogel and scaffold: application to bone regeneration. Mol Pharm. 2019;16(1):327-38. doi: 10.1021/acs.molpharmaceut.8b00995, PMID 30444624.

Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol. 2022;222(A):132-53. doi: 10.1016/j.ijbiomac.2022.09.058, PMID 36108752.

Diez Pascual AM. Hot topics in 2022 and future perspectives of macromolecular science. Multidisciplinary digital publishing institute; 2023. p. 28-33. doi: 10.3390/hottopics202200003.

Chen W, Li X, Zeng L, Pan H, Liu Z. Allicin-loaded chitosan/polyvinyl alcohol scaffolds as a potential wound dressing material to treat diabetic wounds: an in vitro and in vivo study. J Drug Deliv Sci Technol. 2021;65:102734. doi: 10.1016/j.jddst.2021.102734.

Tiomnova OT, Coelho F, Pellizaro TAG, Enrique J, Chanfrau R, de Oliveira Capote TS. Preparation of scaffolds of amorphous calcium phosphate and bacterial cellulose for use in tissue regeneration by freeze-drying process. Biointerface Res Appl Chem. 2021;11:7357-67. doi: 10.33263/BRIAC118.357367.

Goimil L, Jaeger P, Ardao I, Gomez Amoza JL, Concheiro A, Alvarez Lorenzo C. Preparation and stability of dexamethasone-loaded polymeric scaffolds for bone regeneration processed by compressed CO2 foaming. J CO2 Util. 2018;24:89-98. doi: 10.1016/j.jcou.2017.12.012.

Castillo Henriquez L, Sanabria Espinoza P, Murillo Castillo B, Montes de Oca Vasquez G, Batista Menezes D, Calvo Guzman B. Topical chitosan-based thermo-responsive scaffold provides dexketoprofen trometamol controlled release for 24 h use. Pharmaceutics. 2021;13(12):2100. doi: 10.3390/pharmaceutics13122100, PMID 34959381.

Wu Y, Heikal L, Ferns G, Ghezzi P, Nokhodchi A, Maniruzzaman M. 3D bioprinting of novel biocompatible scaffolds for endothelial cell repair. Polymers. 2019;11(12):1924. doi: 10.3390/polym11121924, PMID 31766610.

Pahwa R, Ahuja M. Nanocellulose-gellan cross-linked scaffolds for vaginal delivery of fluconazole. Int J Biol Macromol. 2023;229:668-83. doi: 10.1016/j.ijbiomac.2022.12.273, PMID 36592850.

Gafitanu CA, Filip D, Cernatescu C, Rusu D, Tuchilus CG, Macocinschi D. Design, preparation and evaluation of HPMC-Based PAA or SA freeze-dried scaffolds for vaginal delivery of fluconazole. Pharm Res. 2017;34(10):2185-96. doi: 10.1007/s11095-017-2226-z, PMID 28707165.

Alopaeus JF, Hellfritzsch M, Gutowski T, Scherließ R, Almeida A, Sarmento B. Mucoadhesive buccal films based on a graft co-polymer–a mucin-retentive hydrogel scaffold. Eur J Pharm Sci. 2020;142:105142. doi: 10.1016/j.ejps.2019.105142. PMID 31707042.

Dorati R, De Trizio A, Genta I, Merelli A, Modena T, Conti B. Gentamicin-loaded thermosetting hydrogel and moldable composite scaffold: formulation study and biologic evaluation. J Pharm Sci. 2017;106(6):1596-607. doi: 10.1016/j.xphs.2017.02.031, PMID 28283432.

Pinto RV, Gomes PS, Fernandes MH, Costa MEV, Almeida MM. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications. Mater Sci Eng C Mater Biol Appl. 2020;109:110557. doi: 10.1016/j.msec.2019.110557, PMID 32228952.

Shamekhi MA, Mirzadeh H, Mahdavi H, Rabiee A, Mohebbi Kalhori D, Baghaban Eslaminejad MB. Graphene oxide containing chitosan scaffolds for cartilage tissue engineering. Int J Biol Macromol. 2019;127:396-405. doi: 10.1016/j.ijbiomac.2019.01.020, PMID 30625354.

Villate Beitia I, Truong NF, Gallego I, Zarate J, Puras G, Pedraz JL. Hyaluronic acid hydrogel scaffolds loaded with cationic niosomes for efficient non-viral gene delivery. RSC Adv. 2018;8(56):31934-42. doi: 10.1039/c8ra05125a, PMID 30294422.

Velasco D, Benito L, Fernandez Gutierrez M, San Roman J, Elvira C. Preparation in supercritical CO2 of porous poly(methyl methacrylate)–poly(l-lactic acid) (PMMA–PLA) scaffolds incorporating ibuprofen. J Supercrit Fluids. 2010;54(3):335-41. doi: 10.1016/j.supflu.2010.05.012.

Goimil L, Braga MEM, Dias AMA, Gomez Amoza JL, Concheiro A, Alvarez-Lorenzo C. Supercritical processing of starch aerogels and aerogel-loaded poly(ε-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. J CO2 Util. 2017;18:237-49. doi: 10.1016/j.jcou.2017.01.028.

Shamma RN, Elkasabgy NA, Mahmoud AA, Gawdat SI, Kataia MM, Abdel Hamid MAA. Design of novel injectable in-situ forming scaffolds for non-surgical treatment of periapical lesions: In vitro and in vivo evaluation. Int J Pharm. 2017;521(1-2):306-17. doi: 10.1016/j.ijpharm.2017.02.058, PMID 28235624.

Shoaib Q, Abbas N, Irfan M, Hussain A, Arshad MS, Hussain SZ. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen. Trop J Pharm Res 2018;17(8):1465-74. doi: 10.4314/tjpr.v17i8.2.

Lui YS, Lewis MP, Loo SCJ. Sustained‐release of naproxen sodium from electrospun‐aligned PLLA–PCL scaffolds. J Tissue Eng Regen Med. 2017;11(4):1011-21. doi: 10.1002/term.2000, PMID 25712012.

Mahmoud AA, Salama AH. Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: preparation, evaluation and in vivo wound healing assessment. Eur J Pharm Sci. 2016;83:155-65. doi: 10.1016/j.ejps.2015.12.026, PMID 26733072.

Mohammadi F, Mohammadi Samani SM, Tanideh N, Ahmadi F. Hybrid scaffolds of hyaluronic acid and collagen loaded with prednisolone: an interesting system for osteoarthritis. Adv Pharm Bull. 2018;8(1):11-9. doi: 10.15171/apb.2018.002, PMID 29670834.

Bennet D, Marimuthu M, Kim S, An J. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery. Int J Nanomedicine. 2012;7:3399-419. doi: 10.2147/IJN.S32800, PMID 22888222.

Kamel R, El-Wakil NA, Abdelkhalek AA, Elkasabgy NA. Nanofibrillated cellulose/cyclodextrin based 3D scaffolds loaded with raloxifene hydrochloride for bone regeneration. Int J Biol Macromol. 2020;156:704-16. doi: 10.1016/j.ijbiomac.2020.04.019, PMID 32289405.

Orgul D, Eroglu H, Hekimoglu S. Formulation and characterization of tissue scaffolds containing simvastatin loaded nanostructured lipid carriers for treatment of diabetic wounds. J Drug Deliv Sci Technol. 2017;41:280-92. doi: 10.1016/j.jddst.2017.08.001.

Shanmugarajan TS, Selvan NK, Uppuluri VNVA. Development and characterization of squalene-loaded topical agar-based emulgel scaffold: wound healing potential in full-thickness burn model. Int J Low Extrem Wounds. 2021;20(4):364-73. doi: 10.1177/1534734620921629, PMID 32502363.

Birer M, Acartürk F. Telmisartan loaded polycaprolactone/gelatin-based electrospun vascular scaffolds. Int J Polym Mater Polym Biomater. 2022;71(11):858-73. doi: 10.1080/00914037.2021.1915785.

Teng SH, Lee EJ, Wang P, Jun SH, Han CM, Kim HE. Functionally gradient chitosan/hydroxyapatite composite scaffolds for controlled drug release. J Biomed Mater Res B Appl Biomater. 2009;90(1):275-82. doi: 10.1002/jbm.b.31283, PMID 19086057.

Constantin SM, Buron F, Routier S, Vasincu IM, Apotrosoaei M, Lupașcu F. Formulation and characterization of new polymeric systems based on chitosan and xanthine derivatives with thiazolidin-4-one scaffold. Materials (Basel). 2019;12(4):558. doi: 10.3390/ma12040558, PMID 30781782.

Luginbuehl V, Wenk E, Koch A, Gander B, Merkle HP, Meinel L. Insulin-like growth factor I-releasing alginate-tricalciumphosphate composites for bone regeneration. Pharm Res. 2005;22(6):940-50. doi: 10.1007/s11095-005-4589-9, PMID 15948038.

Lupascu FG, Dash M, Samal SK, Dubruel P, Lupusoru CE, Lupusoru RV. Development, optimization and biological evaluation of chitosan scaffold formulations of new xanthine derivatives for treatment of type-2 diabetes mellitus. Eur J Pharm Sci. 2015;77:122-34. doi: 10.1016/j.ejps.2015.06.008, PMID 26079402.

Luo K, Wang L, Tang J, Zeng X, Chen X, Zhang P. Enhanced biomineralization of shape memory composite scaffolds from citrate functionalized amorphous calcium phosphate for bone repair. J Mater Chem B. 2021;9(44):9191-203. doi: 10.1039/d1tb01554k, PMID 34698324.

Jindal A, Mondal T, Bhattacharya J. An in vitro evaluation of zinc silicate fortified chitosan scaffolds for bone tissue engineering. Int J Biol Macromol. 2020;164:4252-62. doi: 10.1016/j.ijbiomac.2020.09.018, PMID 32910962.

Jia G, Chen C, Zhang J, Wang Y, Yue R, Luthringer Feyerabend BJC. In vitro degradation behavior of Mg scaffolds with three-dimensional interconnected porous structures for bone tissue engineering. Corros Sci. 2018;144:301-12. doi: 10.1016/j.corsci.2018.09.001.

Mahumane GD, Kumar P, Pillay V, Choonara YE. Repositioning N-acetylcysteine (NAC): NAC-loaded electrospun drug delivery scaffolding for potential neural tissue engineering application. Pharmaceutics. 2020;12(10):934. doi: 10.3390/pharmaceutics12100934, PMID 33007830.

Lei H, Xiao R, Tang XJ, Gui L. Evaluation of the efficacy of platelet-rich plasma in delivering BMSCs into 3D porous scaffolds. J Biomed Mater Res B Appl Biomater. 2009;91(2):679-91. doi: 10.1002/jbm.b.31444, PMID 19582863.

Alves da Silva ML, Crawford A, Mundy JM, Correlo VM, Sol P, Bhattacharya M. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomater. 2010;6(3):1149-57. doi: 10.1016/j.actbio.2009.09.006, PMID 19788942.

Patricio T, Domingos M, Gloria A, Bartolo P. Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Procedia CIRP. 2013;5:110-4. doi: 10.1016/j.procir.2013.01.022.

Mesquita Guimaraes J, Leite MA, Souza JC, Henriques B, Silva FS, Hotza D. Processing and strengthening of 58S bioactive glass-infiltrated titania scaffolds. J Biomed Mater Res A. 2017;105(2):590-600. doi: 10.1002/jbm.a.35937, PMID 27750402.

Sharma M, Waterhouse GI, Loader SW, Garg S, Svirskis D. High surface area polypyrrole scaffolds for tunable drug delivery. Int J Pharm. 2013;443(1-2):163-8. doi: 10.1016/j.ijpharm.2013.01.006, PMID 23318368.

Gaharwar AK, Mihaila SM, Kulkarni AA, Patel A, Di Luca A, Reis RL. Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. J Control Release. 2014;187:66-73. doi: 10.1016/j.jconrel.2014.04.035, PMID 24794894.

Budi HS, Davidyants A, Rudiansyah M, Ansari MJ, Suksatan W, Sultan MQ. Alendronate reinforced polycaprolactone-gelatin-graphene oxide: a promising nanofibrous scaffolds with controlled drug release. Mater Today Commun. 2022;32:104108. doi: 10.1016/j.mtcomm.2022.104108.

Soundrapandian C, Mahato A, Kundu B, Datta S, Sa B, Basu D. Development and effect of different bioactive silicate glass scaffolds: in vitro evaluation for use as a bone drug delivery system. J Mech Behav Biomed Mater. 2014;40:1-12. doi: 10.1016/j.jmbbm.2014.08.007, PMID 25190432.

Dubnika A, Loca D, Rudovica V, Parekh MB, Berzina Cimdina L. Functionalized silver doped hydroxyapatite scaffolds for controlled simultaneous silver ion and drug delivery. Ceram Int. 2017;43(4):3698-705. doi: 10.1016/j.ceramint.2016.11.214.

Kondiah PJ, Kondiah PPD, Choonara YE, Marimuthu T, Pillay V. A 3D bioprinted pseudo-bone drug delivery scaffold for bone tissue engineering. Pharmaceutics. 2020;12(2):166. doi: 10.3390/pharmaceutics12020166, PMID 32079221.

Fadilah F, Yanuar A, Arsianti A, Andrajati R. Phenylpropanoids, eugenol scaffold, and its derivatives as anticancer. Asian J Pharm Clin Res. 2017 Mar 1;10(3):41-6. doi: 10.22159/ajpcr.2017.v10i3.16071.

Garg A, Upadhyay P. Mucoadhesive microspheres: a short review. Asian J Pharm Clin Res. 2012;5(3):24-7.

Shwetha S, Kamath K, Kumar SK. Design and evaluation of floating microspheres of rabeprazole sodium. Int J Pharm Pharm Sci. 2012;4(3):104-20.

Kakkar VA, Wani SUD, Gautam SP, Qadrie ZL. Role of microspheres in novel drug delivery systems: preparation methods and applications. Int J Curr Pharm Sci. 2020 May 15;12(3):10-5. doi: 10.22159/ijcpr.2020v12i3.38326.

Published

07-11-2023

How to Cite

KUMAR K., S., & M., M. (2023). ADVANCEMENTS IN SCAFFOLD-BASED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE OVERVIEW AND RECENT DEVELOPMENTS. International Journal of Applied Pharmaceutics, 15(6), 20–32. https://doi.org/10.22159/ijap.2023v15i6.48645

Issue

Section

Review Article(s)