INTERACTIONS OF ORTHOSIPHON STAMINEUS COMPOUNDS AGAINST COX-2 AS AN ANTI-INFLAMMATORY USING IN SILICO METHODS AND TOXICITY PREDICTION

Authors

  • MUCHTARIDI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia https://orcid.org/0000-0002-6156-8025
  • MICHELLE DARMAWAN Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia https://orcid.org/0009-0000-8252-1587
  • MARIA ELIZABETH Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
  • DELA NURZANAH Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
  • PRISKILA MARGARETHA Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
  • ANGELA ALYSIA ELAINE Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
  • NELI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
  • NURHANIFAH PUSPITADEWI Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
  • LUTHFI UTAMI SETYAWATI Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia https://orcid.org/0000-0001-7054-5573
  • NUR KUSAIRA KHAIRUL IKRAM Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.22159/ijap.2023v15i6.48663

Keywords:

Anti-inflammatory, Molecular docking, Orthosiphon stamineus Benth, COX-2

Abstract

Objective: Orthosiphon stamineus, or cat's whiskers, are known to have several pharmacological activities, one of which is anti-inflammatory. An in silico study was conducted to determine the active compound with anti-inflammatory activity from Orthosiphon stamineus leaves while also assessing their toxicity.

Methods: AutoDock 4 was used to perform molecular docking, while LigandScout 4.4.3 Advanced was used to screen pharmacophores. The Swiss ADME and PreAdmet websites were used to screen the prediction of Lipinski’s rules of 5 and toxicity.

Results: In this in silico study on the COX-2 enzyme (PDB ID: 3ln1) with a RMSD validation value of 1.00 Å, Tetramethyl Luteolin emerged as the most promising candidate, exhibiting the lowest binding energy of-9.90 kcal/mol and a KI value of 55.80 nM, indicating favorable interactions within the active site. The compound also satisfied the Lipinski Rules and demonstrated favorable absorption and distribution characteristics, with HIA at 98.440681% and CaCO2 permeability at 53.1689 nm/sec, along with a small BBB value of 0.0154021 and quite good %PPB of 87.388706. Furthermore, Tetramethyl Luteolin obtained a pharmacophore fit score of 32.42, indicating possession of key structural features essential for desired biological activity.

Conclusion: The flavonoid-derived compounds in cat's whisker leaf extract show promise as potential anti-inflammatory drug candidates, with Tetramethyl luteolin emerging as the best candidate among nine compounds, meeting Lipinski rules and exhibiting superior ADMET properties. These results highlight the potential of Tetramethyl Luteolin as a lead compound, necessitating additional research into its intended target or biological function.

Downloads

Download data is not yet available.

References

Hamzah N, Najib A, Thahir N, Misqawati I. Studi farmakofor reseptor COX-2 sebagai anti inflamasi. Jf Fik Uinam. 2015 Jan;2(3):99-107.

Dinarello CA. Anti-inflammatory agents: present and future. Cell. 2010 Mar 19;140(6):935-50. doi: 10.1016/j.cell.2010.02.043, PMID 20303881.

Ali A, Jalil J, Husain K, Ahmad W. Raging the war against inflammation with natural products. Front Pharmacol. 2018 Sep 7;9(976):1-27.

Barone M, Pannuzzo G, Santagati A, Catalfo A, De Guidi GD, Cardile V. Molecular docking and fluorescence characterization of benzothieno[3,2-d]pyrimidin-4-one sulphonamide thio-derivatives, a novel class of selective cyclooxygenase-2 inhibitors. Molecules. 2014 May 14;19(5):6106-22. doi: 10.3390/molecules19056106, PMID 24830713.

Moossavi S, Bishehsari F. Inflammation in sporadic colorectal cancer. Arch Iran Med. 2012 Mar;15(3):166-70. PMID 22369306.

Miladiyah I, Jumina J, Haryana SM, Mustofa M. In silico molecular docking of xanthone derivatives as cyclooxygenase-2 inhibitor agents. Int J Pharm Pharm Sci. 2017 Feb 3;9(3):98-104. doi: 10.22159/ijpps.2017v9i3.15382.

Laavola M, Nieminen R, Yam M MF, Sadikun S, Asmawi MZ, Basir R, Welling J, Vapaatalo H, Korhonen R, Moilanen E. Flavonoids eupatorin and sinensetin present in orthosiphon stamineus leaves inhibit inflammatory gene expression and STAT1 activation. Planta Med. 2012 Apr 19;78(8):779-86.

Surahmaida S, Umarudin U, Junairiah J. Senyawa bioaktif daun kumis kucing (Orthosiphon stamineus). J Kimia Riset. 2019 Jun;4(1):81-8. doi: 10.20473/jkr.v4i1.13176.

Hossain MA, Mizanur Rahman SM. Isolation and characterisation of flavonoids from the leaves of medicinal plant Orthosiphon stamineus. Arab J Chem. 2015 Mar;8(2):218-21. doi: 10.1016/j.arabjc.2011.06.016.

Faramayuda F, Julian S, Windyaswari AS, Mariani TS, Elfahmi E, Sukrasno S. Review: flavonoid pada tanaman kumis kucing (Orthosiphon stamineus Benth.): review: flavonoid compounds in orthosiphon stamineus. Proceeding Mulawarman Pharm Conf. 2021 Aug 2;13(1):281-7.

Alshehade SA, Al Zarzour RH, Murugaiyah V, Lim SYM, El-Refae HG, Alshawsh MA. Mechanism of action of orthosiphon stamineus against non-alcoholic fatty liver disease: insights from systems pharmacology and molecular docking approaches. Saudi Pharm J. 2022;30(11):1572-88. doi: 10.1016/j.jsps.2022.09.001, PMID 36465851.

Li Z, Qu B, Zhou L, Chen H, Wang J, Zhang W. A new strategy to investigate the efficacy markers underlying the medicinal potentials of Orthosiphon stamineus Benth. Front Pharmacol. 2021 Sep 24;12:748684. doi: 10.3389/fphar.2021.748684, PMID 34630118.

Zhang B, Hu XT, Gu J, Yang YS, Duan YT, Zhu HL. Discovery of novel sulfonamide-containing aminophosphonate derivatives as selective COX-2 inhibitors and anti-tumor candidates. Bioorg Chem. 2020 Dec;105:104390. doi: 10.1016/j.bioorg.2020.104390, PMID 33137555.

Veitch NC, Smith M, Barnes J, Anderson LA, Phillipson JD. Herbal medicines. 4th ed. London, UK: Pharmaceutical Press; 2013. p. 813.

Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001 Oct;74(4):418-25. doi: 10.1093/ajcn/74.4.418, PMID 11566638.

Shen J, Xu X, Cheng F, Liu H, Luo X, Shen J. Virtual screening on natural products for discovering active compounds and target information. Curr Med Chem. 2003 Nov;10(21):2327-42. doi: 10.2174/0929867033456729, PMID 14529345.

Daina A, Michielin O, Zoete V. Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar 3;7(1):42717. doi: 10.1038/srep42717, PMID 28256516.

Lee SK, Lee IH, Kim HJ, Chang GS, Chung JE, No KT. The PreADME approach: web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. Euro QSAR 2002-Designing Drugs and Crop Protectants: Processes Problems and Solution. 2002 Jan 1;2003:418-20.

Setyawati LU, Parlan FIHB, Ikram NKK, Yusuf, Muchtaridi M. Molecular dynamic simulation and 3rd pharmacophore modeling of alpha mangostin and its derivatives against estrogen alpha receptor. Lett Drug Des Discov. 2023 Mar 9;20(20):1-17.

Bhowmik R, Roy S, Sengupta S, Sharma S. Biocomputational and pharmacological analysis of phytochemicals from Zingiber officinale (Ginger), allium sativum (garlic), and murrayakoenigii (curry leaf) in contrast to type 2-diabetes. Int J App Pharm. 2021 Jul 3;13(5):280-6. doi: 10.22159/ijap.2021v13i5.42294.

Lestari D, Sari RP, Musfiroh I, Megantara S, Praceka MS, Ikram NKK. Interactions of xantone compounds from the mangosteen (Garcinia Magostana L.) pericarps against INOS, COX-1, and COX-2 enzyme receptors as anti-inflammatory. Int J Appl Pharm. 2023 Jan;15(1):186-94.

Hermanto F, Subarnas A, Bambang Sutjiatmo AB, Berbudi A. Molecular docking study and pharmacophore modelling of ursolic acid as an antimalarial using structure-based drug design method. Int J App Pharm. 2023 Jan 7;15(1):206-11. doi: 10.22159/ijap.2023v15i1.46298.

Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem. 2012 Jun 20;55(14):6582-94. doi: 10.1021/jm300687e, PMID 22716043.

Holik HA, Rifasta MI, Murdaya N, Sagitasa S. In silico study of yodium leaf (Jatropha multifida Linn) active compound as antibiotic for diabetic wounds. Int J App Pharm. 2022 Nov;14(4):111-5. doi: 10.22159/ijap.2022.v14s4.PP22.

Sari IW, Junaidin J, Pratiwi D. Studi molecular docking senyawa flavonoid herba kumis kucing (Orthosiphon stamineus B.) pada reseptor α-glukosidase sebagai antidiabetes tipe 2. J Farmagazine. 2020 Aug 28;7(2):54-60. doi: 10.47653/farm.v7i2.194.

Arba M, Arfan TA, Trisnawati A, Kurniawati D. Pemodelan farmakofor untuk identifikasi inhibitor heat shock proteins-90 (HSP-90): pharmacophore modeling to identify heat shock proteins-9 (HSP-90) inhibitors. J Farmasi Galenika. 2020 Sep 30;6(2):229-36. doi: 10.22487/j24428744.2020.v6.i2.15036.

Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drug ability. Adv Drug Deliv Rev. 2016 Jun 1;101:89-98. doi: 10.1016/j.addr.2016.05.007, PMID 27182629.

Cheng F, Li W, Liu G, Tang Y. In silico ADMET prediction: recent advances, current challenges and future trends. Curr Top Med Chem. 2013;13(11):1273-89. doi: 10.2174/15680266113139990033, PMID 23675935.

Fauzi M, Fadillah A, Rahman F, Ramadhani J, Erlianti K, Hasniah SYB. Activity screening and structure modification of artocarpin against ACE2 and main protease through in silico method. Int J App Pharm. 2021 Nov 7;13(6):192-8. doi: 10.22159/ijap.2021v13i6.42571.

Setyawati LU, Nurhidayah W, Khairul Ikram NK, Mohd Fuad WE, Muchtaridi M. General toxicity studies of alpha mangostin from Garcinia mangostana: a systematic review. Heliyon. 2023 May 8;9(5):e16045. doi: 10.1016/j.heliyon.2023.e16045, PMID 37215800.

Ames BN, Gurney EG, Miller JA, Bartsch H. Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Natl Acad Sci USA. 1972 Nov 1;69(11):3128-32. doi: 10.1073/pnas.69.11.3128, PMID 4564203.

Feinstein WP, Brylinski M. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J Cheminform. 2015 May 15;7(18):18. doi: 10.1186/s13321-015-0067-5, PMID 26082804.

Pratama MRF, Poerwono H, Siswodihardjo S. Introducing a two-dimensional graph of docking score difference vs. similarity of ligand-receptor interactions. Indones J Biotechnol. 2021 Mar 30;26(1):54-60. doi: 10.22146/ijbiotech.62194.

Jia CS, Wang YT, Wei LS, Wang CW, Peng XL, Zhang LH. Predictions of entropy and Gibbs energy for carbonyl sulfide. ACS Omega. 2019 Nov 14;4(22):20000-4. doi: 10.1021/acsomega.9b02950, PMID 31788634, PMCID PMC6882136.

Shityakov S, Forster C. In silico structure-based screening of versatile P-glycoprotein inhibitors using polynomial empirical scoring functions. Adv Appl Bioinform Chem. 2014;7:1-9. doi: 10.2147/AABC.S56046, PMID 24711707.

Ahmadi M, Bekeschus S, Weltmann KD, von Woedtke T, Wende K. Non-steroidal anti-inflammatory drugs: recent advances in the use of synthetic COX-2 inhibitors. RSC Med Chem. 2022 Feb 14;13(5):471-96. doi: 10.1039/d1md00280e, PMID 35685617, PMCID PMC9132194.

Adriani. Prediksi senyawa bioaktif dari tanaman sanrego (Lunasia amara Blanco) sebagai inhibitor enzim siklooksigenase (COX-2) melalui pendekatan molecular docking. J Ilmiah Pena. 2018;1(1):6-11.

Proekt A, Hemmings HC. Mechanisms of drug action. In: Hemmings HC, Egan TD, editors. Pharmacology and physiology for anesthesia. 2nd ed. Amsterdam: Elsevier; 2019. p. 2-19.

Vadlakonda R, Enaganti S, Nerella R. Insilico discovery of human aurora b kinase inhibitors by molecular docking, pharmacophore validation and admet studies. Asian J Pharm Clin Res. 2017 Feb 1;10(2):165-74. doi: 10.22159/ajpcr.2017.v10i2.14974.

Chandrasekaran B, Agrawal N, Kaushik S. Pharmacophore development. In: Elsevier P, editor. Encyclopedia of Bioinformatics and Computational Biology. Vol. 2; 2019. p. 1162.

Published

07-11-2023

How to Cite

MUCHTARIDI, DARMAWAN, M., ELIZABETH, M., NURZANAH, D., MARGARETHA, P., ELAINE, A. A., NELI, PUSPITADEWI, N., SETYAWATI, L. U., & KHAIRUL IKRAM, N. K. (2023). INTERACTIONS OF ORTHOSIPHON STAMINEUS COMPOUNDS AGAINST COX-2 AS AN ANTI-INFLAMMATORY USING IN SILICO METHODS AND TOXICITY PREDICTION. International Journal of Applied Pharmaceutics, 15(6), 288–296. https://doi.org/10.22159/ijap.2023v15i6.48663

Issue

Section

Original Article(s)

Most read articles by the same author(s)