CHARACTERIZATION AND SCREENING PARAMETERS OF SPRAY FILM-FORMING SYSTEMS: A COMPREHENSIVE STUDY ON DOSAGE FORMS AND QUALITY INDICATORS

Authors

  • SHUMKOVA M. M. Department of Pharmaceutical Technology A. P. Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow-119048, Russia. Pharma-Premium Scientific Educational Center, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow-119048, Russia https://orcid.org/0000-0002-4448-2588
  • BAKHRUSHINA E. O. Department of Pharmaceutical Technology A. P. Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow-119048, Russia https://orcid.org/0000-0001-8695-0346
  • DAVYDOVA M. A. Student of Educational Department, A. P. Nelubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow-119048, Russia https://orcid.org/0009-0005-2709-6553
  • POUYA G. Student of Educational Department, A. P. Nelubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow-119048, Russia https://orcid.org/0009-0009-6112-7420
  • AGABALYAN M. M. Student of Educational Department, A. P. Nelubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow-119048, Russia https://orcid.org/0009-0004-0302-2130
  • TIMOSHKINA ALEKSANDRA A. Student of Educational Department, N. V. Sklifosovskiy Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow-119048, Russia
  • NOVOZHILOVA E. V. Arzamastsev Pharmaceutical and Toxicological Chemistry Department A. P. Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow-119048, Russia. Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia-50019, Sesto Fiorentino, Italy https://orcid.org/0000-0002-1037-0617
  • DEMINA N. B. Department of Pharmaceutical Technology A. P. Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow-119048, Russia
  • KRASNYUK I. I. Department of Pharmaceutical Technology A. P. Nelyubin Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow-119048, Russia

DOI:

https://doi.org/10.22159/ijap.2023v15i6.48721

Keywords:

Film-forming systems, Aerosols, Films, Liquid plaster, Bioadhesion, Spray pattern, Medical adhesives, Wound healing, Delivery systems, In situ formation

Abstract

Objective: The objective of this study is to present the main screening parameters for the development of Spray Film-Forming Systems (SFFSs) using the design space. The focus is on characterizing the different phase states of SFFSs during application and establishing appropriate methods for determining the range of parameters.

Methods: In this study, various methods were used to determine the range of SFFS parameters. These include contact angle determination, pH test, viscosity measurement, drying rate estimation, spray pattern determination, tensile strength test, and washability. The methods used were evaluated and found to be effective in assessing the quality parameters of liquid concentrates, aerosols, and films of commercially available SFFS samples.

Results: Three states (liquid, aerosol, and solid) of commercially available SPSFs were evaluated using the techniques mentioned above. The applicability of the techniques and variability was discussed in comparison with similar studies. The results showed that the mean pH ranged from 5.43±0.02 to 6.63±0.05, the bioadhesion of liquid concentrates was in a narrow range of 4.49±0.52, the highest index of dynamic viscosity was 0.33±0.04, values of the spray pattern ranged from 6.19±1.97 to 17.46±2.72 cm2, bioadhesion values of the films ranged from 3.87 to 4.06 N, average values of film formation time were in the range of 65.55±12.65) s. 3 of the 4 samples had resistance to skin cracking, the tensile load of the commercial SFFS films varied from 2.91±0.3 to 5.11±0.65 N, and the tensile strength from 1.07±0.11 to 1.20±0.3 mPa. All films were not washed off with water.

Conclusion: The findings of this study demonstrate the successful application of tested methods in determining the range of parameters for SFFSs. The established values for indicators of liquid concentrates can serve as a basis for the further development of SFFSs. Overall, this research contributes to the understanding and standardization of Spray Film-Forming Systems for wounds, enabling their effective development and application in local skin treatments.

Downloads

Download data is not yet available.

References

Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: current advances and future directions. J Appl Polym Sci. 2019;136(27). doi: 10.1002/app.47738.

Dreifke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng C Mater Biol Appl. 2015;48:651-62. doi: 10.1016/j.msec.2014.12.068, PMID 25579968.

Ubbink DT, Brolmann FE, Go PM, Vermeulen H. Evidence-based care of acute wounds: a perspective. Adv Wound Care (New Rochelle). 2015;4(5):286-94. doi: 10.1089/wound.2014.0592, PMID 26005594.

Clinical guideline by the Royal Children’s Hospital Melbourne approved by the Clinical Effectiveness Committee; 2019.

Radhakrishnan A, Kuppusamy G, Karri VVSR. Spray bandage strategy in topical drug delivery. J Drug Deliv Sci Technol. 2018;43:113-21. doi: 10.1016/j.jddst.2017.09.018.

de Faria MF, Ferreira MBG, dos Santos Felix MM, Bessa RMV, Barbosa MH. Prevention of medical adhesive-related skin injury during patient care: a scoping review. International Journal of Nursing Studies Advances. 2022;4. doi: 10.1016/j.ijnsa.2022.100078.

Bakhrushina EO, Shumkova MM, Sergienko FS, Novozhilova EV, Demina NB. Spray film-forming systems as promising topical in situ systems: a review. Saudi Pharm J. 2023;31(1):154-69. doi: 10.1016/j.jsps.2022.11.014, PMID 36685308.

Alven S, Peter S, Mbese Z, Aderibigbe BA. Polymer-based wound dressing materials loaded with bioactive agents: potential materials for the treatment of diabetic wounds. Polymers. 2022;14(4):724. doi: 10.3390/polym14040724, PMID 35215637.

Sritharadol R, Nakpheng T, Wan Sia Heng P, Srichana T. Development of a topical Mupirocin spray for antibacterial and wound-healing applications. Drug Dev Ind Pharm. 2017;43(10):1715-28. doi: 10.1080/03639045.2017.1339077, PMID 28581830.

Abd UK, Butarbutar MET, Sriwidodo S, Wathoni N. Film-forming sprays for topical drug delivery. Drug Des Devel Ther. 2020;14:2909–25. doi: 10.2147/DDDT.S256666.

Spampinato SF, Caruso GI, de Pasquale R, Sortino MA, Merlo S. The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals (Basel). 2020;13(4):2020.13. doi: 10.3390/ph13040060, PMID 32244718.

Chandrakala MNJ, Chandrakala V, Srinivasan S. An overview: recent development in transdermal drug delivery. Int J Pharm Pharm Sci. 2022:1-9. doi: 10.22159/ijpps.2022v14i10.45471.

Ranade S, Bajaj A, Londhe V, Babul N, Kao D. Fabrication of topical metered dose film forming sprays for pain management. Eur J Pharm Sci. 2017;100:132-41. doi: 10.1016/j.ejps.2017.01.004, PMID 28069427.

Wani A, Sanghani C, Wani S. Formulation, characterization, and in vitro evaluation of novel microemulsion-based spray for topical delivery of isotretinoin. Asian J Pharm Clin Res. 2018;11(10):226. doi: 10.22159/ajpcr.2018.v11i10.27019.

Frederiksen K, Guy RH, Petersson K. The potential of polymeric film-forming systems as sustained delivery platforms for topical drugs. Expert Opin Drug Deliv. 2016;13(3):349-60. doi: 10.1517/17425247.2016.1124412, PMID 26609868.

Pünnel LC, Lunter DJ. Film-forming systems for dermal drug delivery. Pharmaceutics. 2021;13(7). doi: 10.3390/pharmaceutics13070932, PMID 34201668.

Xu K, Wu X, Zhang X, Xing M. Bridging wounds: tissue adhesives’ essential mechanisms, synthesis and characterization, bioinspired adhesives and future perspectives. Burns Trauma. 2022;10:tkac033. doi: 10.1093/burnst/tkac033, PMID 36225327.

Kassab HJ, Thomas LM, Jabir SA. Development and physical characterization of a periodontal bioadhesive gel of gatifloxacin. Int J App Pharm. 2017;9(3):31. doi: 10.22159/ijap.2017v9i3.7056.

Kharenko EA, Larionova NI, Demina NB. Mucoadhesive drug delivery systems: quantitative assessment of the interaction between synthetic and natural polymer films and mucosa. Pharm Chem J. 2008;42(7):392-9. doi: 10.1007/s11094-008-0132-8.

Bakhrushina E, Anurova M, Demina N, Kashperko A, Rastopchina O, Bardakov A. Comparative study of the mucoadhesive properties of polymers for pharmaceutical use. Open Access Maced J Med Sci. 2020;8(A):639-45. doi: 10.3889/oamjms.2020.4930.

Jafari H, Ramezani V, Nabi Meibodi M, Ranjbar AM. Development of novel adhesive bilayer lyophilized wafer of moxifloxacin as a modern wound dressing. Iran J Pharm Res. 2021;20(3):271-84. doi: 10.22037/ijpr.2021.112962.14081, PMID 34903988.

Schneider LA, Korber A, Grabbe S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res. 2007;298(9):413-20. doi: 10.1007/s00403-006-0713-x, PMID 17091276.

Power G, Moore Z, O’Connor T. Measurement of pH, exudate composition and temperature in wound healing: a systematic review. J Wound Care. 2017;26(7):381-97. doi: 10.12968/jowc.2017.26.7.381, PMID 28704150.

Percival SL, McCarty S, Hunt JA, Woods EJ. The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 2014;22(2):174-86. doi: 10.1111/wrr.12125, PMID 24611980.

Nasilowska B, Bogdanowicz Z, Hincza K, Mierczyk Z, Gozdz S, Djas M. Graphene oxide aerosol deposition and its influence on cancer cells. Preliminary results. Materials (Basel). 2020;13(19):4464. doi: 10.3390/ma13194464, PMID 33050094.

Pagano C, Marinozzi M, Baiocchi C, Beccari T, Calarco P, Ceccarini MR. Bioadhesive polymeric films based on red onion skins extract for wound treatment: an innovative and eco-friendly formulation. Molecules. 2020;25(2):318. doi: 10.3390/molecules25020318, PMID 31941100.

Furtado SC, Srinivasan B, Abraham S. Wound healing concepts: contemporary practices and future perspectives. Int J App Pharm. 2020;12(5):7-15. doi: 10.22159/ijap.2020v12i5.38588.

Jang HJ, Shin CY, Kim KB. Safety evaluation of polyethylene glycol (PEG) compounds for cosmetic use. Toxicol Res. 2015;31(2):105-36. doi: 10.5487/TR.2015.31.2.105, PMID 26191379.

Zurdo Schroeder I, Franke P, Schaefer UF, Lehr CM. Development and characterization of film-forming polymeric solutions for skin drug delivery. Eur J Pharm Biopharm. 2007;65(1):111-21. doi: 10.1016/j.ejpb.2006.07.015, PMID 16950609.

Zhong Y, Zhuang C, Gu W, Zhao Y. Effect of molecular weight on the properties of chitosan films prepared using electrostatic spraying technique. Carbohydr Polym. 2019;212:197-205. doi: 10.1016/j.carbpol.2019.02.048, PMID 30832847.

Published

07-11-2023

How to Cite

M. M., S., E. O., B., M. A., D., G., P., M. M., A., A., T. A., E. V., N., N. B., D., & I. I., K. (2023). CHARACTERIZATION AND SCREENING PARAMETERS OF SPRAY FILM-FORMING SYSTEMS: A COMPREHENSIVE STUDY ON DOSAGE FORMS AND QUALITY INDICATORS. International Journal of Applied Pharmaceutics, 15(6), 118–124. https://doi.org/10.22159/ijap.2023v15i6.48721

Issue

Section

Original Article(s)