TAILORED BASELLA ALBA MUCILAGE-BASED BIPOLYMERIC HYDROGEL BEADS FOR CONTROLLED RELEASE OF DICLOFENAC SODIUM

Authors

  • MOUMITA CHOWDHURY Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata-700109, West Bengal, India. Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Sodepur, Kolkata-114, West Bengal, India https://orcid.org/0000-0003-0472-8122
  • PINTU KUMAR DE Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata-700109, West Bengal, India https://orcid.org/0000-0002-9898-7506

DOI:

https://doi.org/10.22159/ijap.2023v15i5.48803

Keywords:

Mucilage, Carboxymethylation, Bipolymeric, Hydrogel beads, Controlled release, Formulation

Abstract

Objective: The present investigation aims to convert the underutilized Basella alba mucilage (BAM) into a smart carrier by formulating its bipolymeric hydrogel beads for the controlled release of Diclofenac sodium (DFS).

Methods: At first, mucilage from the stem and fruits of Basella alba was extracted, isolated, and evaluated. Basella alba mucilage was chemically modified to its carboxymethyl derivative to improve its physicochemical properties. Single and bipolymeric hydrogel beads of carboxymethylated Basella alba mucilage (CBAM) and Sodium carboxymethyl cellulose (SCMC) were formulated by the Ionotropic gelation method using aluminium chloride (AlCl3) as a cross-linking agent. A four-factor I-optimal response surface design was used to optimize the formulations. Drug and excipient compatibility was studied by Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) study. Scanning electron microscopy (SEM) was done to reveal the surface morphology. In vitro release of the drug in phosphate buffer (pH 6.8) and acidic buffer (pH 1.2) were compared for all the formulations. The effect of various formulation parameters on the release of the drug was studied, and the best-fitting model for release kinetics was determined.

Results: The degree of carboxymethylation was found to be 0.565±0.05. The bipolymeric beads were found to release 14% drug in 2 h in acidic media, minimize the release of the drug in the stomach to avoid the harsh effects of DFS and then provide controlled release in the intestine, releasing 80-90% of the drug in 10 h. The release kinetics followed the Hixon Crowell model, which suggests an erosion of the matrix to release the drug.

Conclusion: The bipolymeric hydrogel beads of tailored Basella alba mucilage were found to control the release of Diclofenac sodium.

Downloads

Download data is not yet available.

References

Ngwuluka NC, Ochekpe NA, Aruoma OI. Naturapolyceutics: the science of utilizing natural polymers for drug delivery. Polymers. 2014;6(5):1312-32. doi: 10.3390/polym6051312.

Deshmukh SA, Gaikwad DK. A review of the taxonomy, ethnobotany, phytochemistry and pharmacology of Basella alba (Basellaceae). J Appl Pharm Sci. 2014;4(1):153-65. doi: 10.7324/JAPS.2014.40125.

Chatchawal C, Nualkaew N, Preeprame S, Porasuphatana S, Priprame A. Physical and biological properties of mucilage from Basella alba L. stem and its gel formulations. Int J Plant Sci. 2010;6:104-12.

Ramu G, Krishna Mohan G, Jayaveera KN. Preliminary investigation of patchaippasali mucilage (Basella alba) as tablet binder. Int J Green Pharm. 2011;5(1):24-7.

Bhat V, Nayak R, Praveena MB. Isolation and evaluation of disintegrating properties of Basella alba linn. Leaf mucilage in tablet formulations. J Biomed Pharm Res. 2015;4(2):29-42.

Pal D, Nayak A, Kalia S. Studies on Basella alba L. leaves mucilage: evaluation of suspending properties. Int J Drug Discov Technol. 2010;1:15-20.

Das S, Alam MN, Batuta S, Ahamed G, Fouzder C, Kundu R, Mandal D, Begum NA. Exploring the efficacy of Basella alba mucilage towards the encapsulation of the hydrophobic antioxidants for their better performance. Process Biochemistry 2017; 61:178-88.

Harika B, Shanmuganathan S, Gowthamarajan K. Formulation and evaluation of controlled release cefixime nanoparticles prepared using Basella alba leaf mucilage and chitosan as matrix formers. J Pharm Sci Res. 2016;8(2):92-9.

Parvathy KS, Susheelamma NS, Tharanathan RN, Gaonkar AK. A simple non-aqueous method for carboxymethylation of galactomannans. Carbohydr Polym. 2005;62(2):137-41. doi: 10.1016/j.carbpol.2005.07.014.

Das S, Ghosh A, Changder A, Nandi G, Ghosh LK. Quality-by-design approach for the development of sustained-release multiple-unit beads of lamotrigine based on an ion-cross-linked composite of pectin and okra mucilage: an in vitro appraisal. Int J Biol Macromol. 2020;163:842-53. doi: 10.1016/j.ijbiomac.2020.07.033, PMID 32653379.

Raj V, Shim JJ, Lee J. Grafting modification of okra mucilage: recent findings, applications, and future directions. Carbohydr Polym. 2020;246:116653. doi: 10.1016/j.carbpol.2020.116653. PMID 32747285.

Sen G, Pal S. A novel polymeric biomaterial based on carboxymethyl starch and its application in controlled drug release. J Appl Polym Sci. 2009;114:2798-805.

Bandyopadhyay PK, Nayak AK. Thiolation of fenugreek seed polysaccharide; utilization as a novel bio mucoadhesive agent in drug delivery. Int J App Pharm. 2023;15(1):290-7. doi: 10.22159/ijap.2023v15i1.46459.

Maiti S, Chowdhury M, Datta R, Ray S, Sa B. Novel gastro ulcer protective micro(hydro)gels of sulfated locust bean gum-aluminum complex for the immediate release of diclofenac sodium. J Drug Target. 2013;21(3):265-76. doi: 10.3109/1061186X.2012.745548, PMID 30952178.

Mohammadi H, Kamkar A, Misaghi A. Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: physico mechanical and antibacterial properties. Carbohydr Polym. 2018;181:351-7. doi: 10.1016/j.carbpol.2017.10.045. PMID 29253983.

Ghumman SA, Bashir S, Noreen S, Khan AM, Riffat S, Abbas M. Polymeric microspheres of okra mucilage and alginate for the controlled release of oxcarbazepine: in vitro & in vivo evaluation. Int J Biol Macromol. 2018;111:1156-65. doi: 10.1016/j.ijbiomac.2018.01.058.

Liu H, Xie X, Chen C, Firempong CK, Feng Y, Zhao L. Preparation and in vitro/in vivo evaluation of a clonidine hydrochloride drug–resin suspension as a sustained-release formulation. Drug Dev Ind Pharm. 2021;47(3):394-402. doi: 10.1080/03639045.2021.1890110, PMID 33615926.

Maity S, Mahapatra SK. Preparation and evaluation of gellan gum-linseed gum blend microbeads for sustained release of aceclofenac. Int J App Pharm. 2022;14(3):49-55. doi: 10.22159/ijap.2022v14i3.43652.

Ghumman SA, Mahmood A, Noreen S, Rana M, Hameed H, Ijaz B. Formulation and evaluation of quince seeds mucilage–sodium alginate microspheres for sustained delivery of cefixime and its toxicological studies. Arab J Chem. 2022;15(6):103811. doi: 10.1016/j.arabjc.2022.103811.

Gada SG, Anandkumar Y, Setty CM. Design and optimization of zidovudine loaded uriddall mucilage microspheres using box behnken method. Int J Pharm Sci Res. 2019;10(4):1856-64.

Gada S, YA, Setty CM. Preparation, evaluation and stability of lamivudine-loaded alginate-tamarind mucilage microspheres. Int J App Pharm. 2019;11(4):365-70. doi: 10.22159/ijap.2019v11i4.33808.

El-Sherbiny IM, Abdel-Bary EM, Harding DRK. Preparation and in vitro evaluation of new pH-sensitive hydrogel beads for oral delivery of protein drugs. J Appl Polym Sci. 2010;115(5):2828-37.

Rokhade AP, Agnihotri SA, Patil SA, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM. Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym. 2006;65(3):243-52. doi: 10.1016/j.carbpol.2006.01.013.

Kundu T, Mukherjee K, Sa B. Hydrogel beads composed of sodium carboxymethyl xanthan and sodium carboxymethyl cellulose for controlled release of aceclofenac: effect of formulation variables. Res J Pharm Technol. 2012;5(1):103-13.

Adedokun M, Nkanta C. Optimized delivery of diclofenac sodium formulated in a sustained release Raphia africana hydrocolloid matrix. Int J App Pharm. 2018;10(1):109-14. doi: 10.22159/ijap.2018v10i1.22925.

Das S, Ghosh A, Das R, Nandi G, Ghosh LK. Development of quality control parameters for standardization of a novel mucilage obtained from okra (abelmoschus esculentus (l.) moench) fruit. Int J Curr Pharm Sci. 2021;13(3):28-41. doi: 10.22159/ijcpr.2021v13i3.42091.

Maiti S, Dey P, Banik A, Sa B, Ray S, Kaity S. Tailoring of locust bean gum and development of hydrogel beads for controlled oral delivery of glipizide. Drug Deliv. 2010;17(5):288-300. doi: 10.3109/10717541003706265, PMID 20350054.

Shivashankar M, Mandal BK. Design and evaluation of chitosan-based novel pH-sensitive drug carrier for sustained release of cefixime. Trop J Pharm Res. 2013;12(2):155-61. doi: 10.4314/tjpr.v12i2.4.

Kumar A, Raizaday A, Gopal UM, Moin A. Development of cashew gum and its derivatives for sustained released drug delivery system: by response surface methodology. Int J Pharm Pharm Sci. 2014;6(10):476-84.

Maiti S, Ray S, Mandal B, Sarkar S, Sa B. Carboxymethyl xanthan microparticles as a carrier for protein delivery. J Microencapsul. 2007;24(8):743-56. doi: 10.1080/02652040701647300, PMID 17926166.

Patel AK, Mishra MK, Gupta J, Ghoshal S, Gupta R, Kushwaha K. Guar gum-based floating microspheres of repaglinide using 32 factorial design: fabrication, optimization, characterization, and in vivo buoyancy behavior in albino rats. Assay Drug Dev Technol. 2021;19(2):63-74. doi: 10.1089/adt.2020.1006. PMID 33090876.

Boppana R, Kulkarni RV, Setty CM, Kalyane NV. Carboxymethylcellulose aluminium hydrogel micorbeads for prolonged release of simvastatin. Acta Pharm Sci. 2010;52(2):137-43.

Sakhare SS, Sayyad FJ. Design, development, and characterization of Ocimum basilicum mucilage-based, modified release mucoadhesive gastrospheres of carvedilol: Ocimum basilicum mucilage-based gastrospheres of carvedilol. Asian J Pharm Clin Res. 2019;12(10):218-25. doi: 10.22159/ajpcr.2019.v12i10.34291.

Babu RJ, Sathigari S, Kumar MT, Pandit JK. Formulation of controlled release gellan gum macro beads of amoxicillin. Curr Drug Deliv. 2010;7(1):36-43. doi: 10.2174/156720110790396445, PMID 19863487.

Ata S, Rasool A, Islam A, Bibi I, Rizwan M, Azeem MK. Loading of cefixime to pH-sensitive chitosan-based hydrogel and investigation of controlled release kinetics. Int J Biol Macromol. 2020;155:1236-44. doi: 10.1016/j.ijbiomac.2019.11.091. PMID 31730964.

Kulkarni AR, Soppimath KS, Aminabhavi TM, Rudzinski WE. In vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm. 2001;51(2):127-33. doi: 10.1016/s0939-6411(00)00150-8, PMID 11226819.

Lin N, Huang J, Chang PR, Feng L, Yu J. Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B Biointerfaces. 2011;85(2):270-9. doi: 10.1016/j.colsurfb.2011.02.039, PMID 21440426.

Shende MA, Marathe RP, Khetmalas SB, Dhabale PN. Studies on the development of sustained release diltiazem hydrochloride matrices through jackfruit mucilage. Int J Pharm Pharm Sci. 2014;6(7):72-8.

Mendyk A, Jachowicz R, Fijorek K, Dorożyński P, Kulinowski P, Polak S. Kinet DS: an open source software for dissolution test data analysis. Dissolution Technol. 2012;19(1):6-11. doi: 10.14227/DT190112P6.

Manikandan A, Nemani SC, Sadheeshkumar V, Arumugam S. Spectroscopic investigations for photostability of diclofenac sodium complexed with hydroxypropyl-Β-cyclodextrin. J App Pharm Sci. 2016;6(04):98-103. doi: 10.7324/JAPS.2016.60414.

Neelam S, Meenakshi B. Formulation and evaluation of polymeric microspheres using box–behnken design. Asian J Pharm Clin Res. 2022;15(10):47-55. doi: 10.22159/ajpcr.2022.v15i10.45250.

Bajpai SK, Sharma S. Investigation of pH-sensitive swelling and drug release behavior of barium alginate/carboxymethyl guar gum hydrogel beads. J Macromol Sci Part. A: Pure and Applied Chemistry. 2006;43(10):1513-21. https://doi.org/10.22159/ ajpcr.2022.v15i10.45250.

Published

07-09-2023

How to Cite

CHOWDHURY, M., & KUMAR DE, P. (2023). TAILORED BASELLA ALBA MUCILAGE-BASED BIPOLYMERIC HYDROGEL BEADS FOR CONTROLLED RELEASE OF DICLOFENAC SODIUM. International Journal of Applied Pharmaceutics, 15(5), 106–116. https://doi.org/10.22159/ijap.2023v15i5.48803

Issue

Section

Original Article(s)