LONG-TERM COVID-19 EFFECT TO ENDOTHELIAL DAMAGE TROUGH EXTRINSIC APOPTOSIS LED TO CARDIOVASCULAR DISEASE PROGRESSION: AN UPDATE REVIEW

Authors

DOI:

https://doi.org/10.22159/ijap.2023v15i6.48889

Keywords:

COVID-19, Long-term effect, Endothelial damage

Abstract

COVID-19 can involve persistence, sequelae, and other medical complications that last weeks to months after initial recovery; these prolonged symptoms called as long-term covid-19 effect. Symptoms, signs, or abnormal clinical parameters persisting two or more weeks after COVID-19 onset that do not return to a healthy baseline can potentially be long-term effects of the disease. SARS-CoV-2 affects the cardiovascular system and causes conditions such as myocarditis, arrhythmias, and myocardial injury. Vascular damage from COVID-19 has been affected directly by the SARS-CoV-2 virus infection and indirectly by systemic inflammatory cytokine storm. This damage can be long-lasting and lead to various cardiovascular complications. Fas ligand (FasL)-Fas complex is a death factor that induces cell apoptosis. Fas and FasL have been detected in the endothelial wall, and it has been proposed that Fas-mediated apoptosis has a role in physiological and pathological cell turnover in the endothelial wall. High concentrations of inflammatory cytokines, such as cytokines storm induced by SARS-CoV-2 infection, are thought to increase the expression of FasL, which leads to an increase in the regulation of extrinsic apoptosis in endothelial cells leading to endothelial damage. This article summarises the current understanding of the long-term covid-19 effect on endothelial damage through extrinsic apoptosis Fas-FasL complex.

Downloads

Download data is not yet available.

References

Escandon K, Rasmussen AL, Bogoch II, Murray EJ, Escandon K, Popescu SV. COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask-wearing, and reinfection. BMC Infect Dis. 2021;21(1):710. doi: 10.1186/s12879-021-06357-4, PMID 34315427.

Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133-46. doi: 10.1038/s41579-022-00846-2, PMID 36639608.

Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: an overview. Diabetes Metab Syndr. 2021;15(3):869-75. doi: 10.1016/j.dsx.2021.04.007, PMID 33892403.

Dryden M, Mudara C, Vika C, Blumberg L, Mayet N, Cohen C. Post-COVID-19 condition 3 months after hospitalization with SARS-CoV-2 in South Africa: a prospective cohort study. Lancet Glob Health. 2022;10(9):e1247-56. doi: 10.1016/S2214-109X(22)00286-8, PMID 35961348.

Silva Andrade B, Siqueira S, de Assis Soares WR, de Souza Rangel F, Santos NO, Dos Santos Freitas A. Long-COVID and post-COVID health complications: an up-to-date review on clinical conditions and their possible molecular mechanisms. Viruses. 2021;13(4):700. doi: 10.3390/v13040700, PMID 33919537.

Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-15. doi: 10.1038/s41591-021-01283-z, PMID 33753937.

Gavriilaki E, Eftychidis I, Papassotiriou I. Update on endothelial dysfunction in COVID-19: severe disease, long COVID-19 and pediatric characteristics. Lab Med. 2021;45(6):293-302. doi: 10.1515/labmed-2021-0134.

Smeda M, Chlopicki S. Endothelial barrier integrity in COVID-19-dependent hyperinflammation: does the protective facet of platelet function matter? Cardiovasc Res. 2020;116(10):e118-21. doi: 10.1093/cvr/cvaa190, PMID 32707576.

Otifi HM, Adiga BK. Endothelial dysfunction in Covid-19 infection. Am J Med Sci. 2022;363(4):281-7. doi: 10.1016/j.amjms.2021.12.010, PMID 35093394.

Del Turco S, Vianello A, Ragusa R, Caselli C, Basta G. COVID-19 and cardiovascular consequences: is the endothelial dysfunction the hardest challenge? Thromb Res. 2020;196:143-51. doi: 10.1016/j.thromres.2020.08.039, PMID 32871306.

Mezoh G, Crowther NJ. Endothelial dysfunction as a primary consequence of SARS-CoV-2 infection; 2021. p. 33-43.

Evans PC, Rainger GE, Mason JC, Guzik TJ, Osto E, Stamataki Z. Endothelial dysfunction in COVID-19: a position paper of the ESC working group for atherosclerosis and vascular biology, and the ESC council of basic cardiovascular science. Cardiovasc Res. 2020;116(14):2177-84. doi: 10.1093/cvr/cvaa230, PMID 32750108.

Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther. 2020;5(1):293. doi: 10.1038/s41392-020-00454-7, PMID 33361764.

Suzuki M, Aoshiba K, Nagai A. Oxidative stress increases Fas ligand expression in endothelial cells. J Inflamm (Lond). 2006;3:11. doi: 10.1186/1476-9255-3-11, PMID 16854215.

Denning TL, Takaishi H, Crowe SE, Boldogh I, Jevnikar A, Ernst PB. Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cells. Free Radical Biol Med. 2002;33(12):1641-50. doi: 10.1016/s0891-5849(02)01141-3, PMID 12488132.

Redza Dutordoir M, Averill Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863(12):2977-92. doi: 10.1016/j.bbamcr.2016.09.012, PMID 27646922.

Blanco Colio LM, Martin Ventura JL, de Teresa E, Farsang C, Gaw A, Gensini G. Increased soluble Fas plasma levels in subjects at high cardiovascular risk: atorvastatin on inflammatory markers (AIM) study, a substudy of ACTFAST. Arterioscler Thromb Vasc Biol. 2007;27(1):168-74. doi: 10.1161/01.ATV.0000250616.26308.d7, PMID 17053166.

Sata M, Suhara T, Walsh K. Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol. 2000;20(2):309-16. doi: 10.1161/01.atv.20.2.309, PMID 10669625.

Tsoupras A, Lordan R, Zabetakis I. Inflammation, not cholesterol, is a cause of chronic disease. Nutrients. 2018;10(5):604. doi: 10.3390/nu10050604, PMID 29757226.

Kamal M, Abo Omirah M, Hussein A, Saeed H. Assessment and characterization of post‐COVID‐19 manifestations. Int J Clin Pract. 2021;75(3):e13746. doi: 10.1111/ijcp.13746, PMID 32991035.

AV, JL, TK. Examination of the effects of long-term COVID-19 impacts on patients with neurological disabilities using a neuromachine learning model. BOHR International Journal of Neurology and Neuroscience. 2022;1:21–8.

Greenhalgh T, Knight M, A’Court C, Buxton M, Husain L. Management of post-acute COVID-19 in primary care. BMJ. 2020;370:m3026. doi: 10.1136/bmj.m3026, PMID 32784198.

Carfì A, Bernabei R, Landi F, Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603-5. doi: 10.1001/jama.2020.12603, PMID 32644129.

Galal I, Hussein AARM, Amin MT, Saad MM, Zayan HEE, Abdelsayed MZ. Determinants of persistent post-COVID-19 symptoms: value of a novel COVID-19 symptom score. Egypt J Bronchol. 2021;15(1):10. doi: 10.1186/s43168-020-00049-4.

Siripanthong B, Asatryan B, Hanff TC, Chatha SR, Khanji MY, Ricci F. The pathogenesis and long-term consequences of COVID-19 cardiac injury. JACC Basic Transl Sci. 2022;7(3):294-308. doi: 10.1016/j.jacbts.2021.10.011, PMID 35165665.

Salamanna F, Veronesi F, Martini L, Landini MP, Fini M. Post-COVID-19 syndrome: the persistent symptoms at the post-viral stage of the disease. A systematic review of the current data. Front Med (Lausanne). 2021;8:653516. doi: 10.3389/fmed.2021.653516, PMID 34017846.

Ramakrishnan RK, Kashour T, Hamid Q, Halwani R, Tleyjeh IM. Unraveling the mystery surrounding post-acute sequelae of COVID-19. Front Immunol. 2021;12:686029. doi: 10.3389/fimmu.2021.686029, PMID 34276671.

Crook H, Raza S, Nowell J, Young M, Edison P. Long covid-mechanisms, risk factors, and management. BMJ. 2021;374:n1648. doi: 10.1136/bmj.n1648, PMID 34312178.

Ludvigsson JF. Case report and systematic review suggest that children may experience similar long‐term effects to adults after clinical COVID‐19. Acta Paediatr. 2021;110(3):914-21. doi: 10.1111/apa.15673, PMID 33205450.

AV, JL, TK. Examination of the effects of long-term COVID-19 impacts on patients with neurological disabilities using a neuromachine learning model. BOHR International Journal of Neurology and Neuroscience. 2022;1:21–8.

Taquet M, Dercon Q, Luciano S, Geddes JR, Husain M, Harrison PJ. Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLOS Med. 2021;18(9):e1003773. doi: 10.1371/journal.pmed.1003773, PMID 34582441.

Augustin M, Schommers P, Stecher M, Dewald F, Gieselmann L, Gruell H. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg Health Eur. 2021;6:100122. doi: 10.1016/j.lanepe.2021.100122, PMID 34027514.

Lopez Leon S, Wegman Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021;11(1):16144. doi: 10.1038/s41598-021-95565-8, PMID 34373540.

Zhao YM, Shang YM, Song WB, Li QQ, Xie H, Xu QF. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. E Clinical Medicine. 2020;25:100463. doi: 10.1016/j.eclinm.2020.100463, PMID 32838236.

van den Borst B, Peters JB, Brink M, Schoon Y, Bleeker Rovers CP, Schers H. Comprehensive health assessment 3 months after recovery from acute coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2021;73(5):e1089-98. doi: 10.1093/cid/ciaa1750, PMID 33220049.

Huang C, Huang L, Wang Y, Li X, Ren L, Gu X. 6 mo consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220-32. doi: 10.1016/S0140-6736(20)32656-8, PMID 33428867.

Arnold DT, Hamilton FW, Milne A, Morley AJ, Viner J, Attwood M. Patient outcomes after hospitalization with COVID-19 and implications for follow-up: results from a prospective UK cohort. Thorax. 2021;76(4):399-401. doi: 10.1136/thoraxjnl-2020-216086, PMID 33273026.

Stefanou MI, Palaiodimou L, Bakola E, Smyrnis N, Papadopoulou M, Paraskevas GP. Neurological manifestations of long-COVID syndrome: a narrative review. Ther Adv Chronic Dis. 2022;13:20406223221076890. doi: 10.1177/20406223221076890, PMID 35198136.

Desai AD, Lavelle M, Boursiquot BC, Wan EY. Long-term complications of COVID-19. Am J Physiol Cell Physiol. 2022;322(1):C1-C11. doi: 10.1152/ajpcell.00375.2021, PMID 34817268.

Lu Y, Li X, Geng D, Mei N, Wu PY, Huang CC. Cerebral micro-structural changes in COVID-19 patients–an MRI-based 3 mo follow-up study. EClinicalmedicine. 2020;25:100484. doi: 10.1016/j.eclinm.2020.100484, PMID 32838240.

Paterson RW, Brown RL, Benjamin L, Nortley R, Wiethoff S, Bharucha T. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020;143(10):3104-20. doi: 10.1093/brain/awaa240, PMID 32637987.

Lawal IO, Kgatle MM, Mokoala K, Farate A, Sathekge MM. Cardiovascular disturbances in COVID-19: an updated review of the pathophysiology and clinical evidence of cardiovascular damage induced by SARS-CoV-2. BMC Cardiovasc Disord. 2022;22(1):93. doi: 10.1186/s12872-022-02534-8, PMID 35264107.

Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265-73. doi: 10.1001/jamacardio.2020.3557, PMID 32730619.

Rajpal S, Tong MS, Borchers J, Zareba KM, Obarski TP, Simonetti OP. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. JAMA Cardiol. 2021;6(1):116-8. doi: 10.1001/jamacardio.2020.4916, PMID 32915194.

Moody WE, Liu B, Mahmoud Elsayed HM, Senior J, Lalla SS, Khan Kheil AM. Persisting adverse ventricular remodeling in COVID-19 survivors: a longitudinal echocardiographic study. J Am Soc Echocardiogr. 2021;34(5):562-6. doi: 10.1016/j.echo.2021.01.020, PMID 33539950.

Liang L, Yang B, Jiang N, Fu W, He X, Zhou Y. Three-month follow-up study of survivors of coronavirus disease 2019 after discharge. J Korean Med Sci. 2020;35(47):e418. doi: 10.3346/jkms.2020.35.e418, PMID 33289374.

Huang C, Huang L, Wang Y, Li X, Ren L, Gu X. 6 mo consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220-32. doi: 10.1016/S0140-6736(20)32656-8, PMID 33428867.

Dennis A, Wamil M, Alberts J, Oben J, Cuthbertson DJ, Wootton D. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ (Open). 2021;11(3):e048391. doi: 10.1136/bmjopen-2020-048391, PMID 33785495.

Carfì A, Bernabei R, Landi F, Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603-5. doi: 10.1001/jama.2020.12603, PMID 32644129.

Ayoubkhani D, Khunti K, Nafilyan V, Maddox T, Humberstone B, Diamond I. Post-covid syndrome in individuals admitted to hospital with Covid-19: retrospective cohort study. BMJ. 2021;372:n693. doi: 10.1136/bmj.n693, PMID 33789877.

Raman B, Cassar MP, Tunnicliffe EM, Filippini N, Griffanti L, Alfaro Almagro F. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalmedicine. 2021;31:100683. doi: 10.1016/j.eclinm.2020.100683, PMID 33490928.

Garcia LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol. 2020;11:1441. doi: 10.3389/fimmu.2020.01441, PMID 32612615.

Saadedine M, El Sabeh M, Borahay MA, Daoud G. The influence of COVID-19 infection-associated immune response on the female reproductive system†. Biol Reprod. 2023;108(2):172-82. doi: 10.1093/biolre/ioac187, PMID 36173920.

Miesbach W, Makris M. COVID-19: coagulopathy, risk of thrombosis, and the rationale for anticoagulation. Clin Appl Thromb Hemost. 2020;26:1076029620938149. doi: 10.1177/1076029620938149, PMID 32677459.

Magrone T, Magrone M, Jirillo E. Focus on receptors for coronaviruses with special reference to angiotensin-converting enzyme 2 as a potential drug target–a perspective. Endocr Metab Immune Disord Drug Targets. 2020;20(6):807-11. doi: 10.2174/1871530320666200427112902, PMID 32338224.

Ananyaa Gowthavaram C. Association between type 2 diabetes mellitus and COVID-19 severity: a literature. Vol. 16; 2023. doi: 10.22159/ajpcr.2023v16i5.47961.

Azizi SA, Azizi SA. Neurological injuries in COVID-19 patients: direct viral invasion or a bystander injury after infection of epithelial/endothelial cells. J Neurovirol. 2020;26(5):631-41. doi: 10.1007/s13365-020-00903-7, PMID 32876900.

Deng H, Tang TX, Chen D, Tang LS, Yang XP, Tang ZH. Endothelial dysfunction and SARS-CoV-2 infection: association and therapeutic strategies. Pathogens. 2021;10(5). doi: 10.3390/pathogens10050582, PMID 34064553.

Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Bruggen MC. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy. 2020;75(7):1564-81. doi: 10.1111/all.14364, PMID 32396996.

Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020;21(7):2657. doi: 10.3390/ijms21072657, PMID 32290293.

Campana P, Parisi V, Leosco D, Bencivenga D, Della Ragione F, Borriello A. Dendritic cells and SARS-CoV-2 infection: still an unclarified connection. Cells. 2020;9(9):2046. doi: 10.3390/cells9092046, PMID 32911691.

Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther. 2020;5(1):293. doi: 10.1038/s41392-020-00454-7, PMID 33361764.

Hanff TC, Mohareb AM, Giri J, Cohen JB, Chirinos JA. Thrombosis in COVID-19. Am J Hematol. 2020;95(12):1578-89. doi: 10.1002/ajh.25982, PMID 32857878.

Gu SX, Tyagi T, Jain K, Gu VW, Lee SH, Hwa JM. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol. 2021;18(3):194-209. doi: 10.1038/s41569-020-00469-1, PMID 33214651.

Hangargekar CB, Quazi RS, Joshi AA. A review on COVID-19-a global battle between life and death. Int J Curr Pharm Sci. 2020;12(4):19-24. doi: 10.22159/ijcpr.2020v12i4.39084.

Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol. 2020;11:1708. doi: 10.3389/fimmu.2020.01708, PMID 32754163.

Notz Q, Schmalzing M, Wedekink F, Schlesinger T, Gernert M, Herrmann J. Pro- and anti-inflammatory responses in severe COVID-19-induced acute respiratory distress syndrome-an observational pilot study. Front Immunol. 2020;11:581338. doi: 10.3389/fimmu.2020.581338, PMID 33123167.

Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-3. doi: 10.1038/s41423-020-0401-3, PMID 32203186.

Aljabr W, Al-Amari A, Abbas B, Karkashan A, Alamri S, Alnamnakani M. Evaluation of the Levels of Peripheral CD3+, CD4+, and CD8+ T Cells and IgG and IgM Antibodies in COVID-19 patients at different stages of infection. Microbiol Spectr. 2022;10(1):e0084521. doi: 10.1128/spectrum.00845-21, PMID 35196808.

Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res. 2002;91(11):988-98. doi: 10.1161/01.res.0000043825.01705.1b, PMID 12456484.

Liu J, Li S, Liu J, Liang B, Wang X, Wang H. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBiomedicine. 2020;55:102763. doi: 10.1016/j.ebiom.2020.102763, PMID 32361250.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5, PMID 31986264.

Bourgonje AR, Abdulle AE, Timens W. Angiotensin‐converting enzyme 2 (ACE2), SARS‐CoV‐2 and the pathophysiology of coronavirus disease. J Pathol. 2019;251:228-48.

Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126(10):1456-74. doi: 10.1161/circresaha.120.317015, PMID 32264791.

Lee CCE, Ali K, Connell D, Mordi IR, George J, Lang EM. COVID-19-associated cardiovascular complications. Diseases. 2021;9(3):47. doi: 10.3390/diseases9030047, PMID 34209705.

Yelin D, Margalit I, Yahav D, Runold M, Bruchfeld J. Long COVID-19-it’s not over until? Clin Microbiol Infect. 2021;27(4):506-8. doi: 10.1016/j.cmi.2020.12.001, PMID 33316400.

Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057-69. doi: 10.7150/ijbs.7502, PMID 24250251.

Silva IVG, de Figueiredo RC, Rios DRA. Effect of different classes of antihypertensive drugs on endothelial function and inflammation. Int J Mol Sci. 2019;20(14):3458. doi: 10.3390/ijms20143458, PMID 31337127.

Nafisa A, Gray SG, Cao Y, Wang T, Xu S, Wattoo FH. Endothelial function and dysfunction: impact of metformin. Pharmacol Ther. 2018;192:150-62. doi: 10.1016/j.pharmthera.2018.07.007, PMID 30056057.

Østergaard L. SARS CoV‐2 related microvascular damage and symptoms during and after COVID‐19: consequences of capillary transit‐time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3):e14726. doi: 10.14814/phy2.14726, PMID 33523608.

Evans PC, Rainger GE, Mason JC, Guzik TJ, Osto E, Stamataki Z. Endothelial dysfunction in COVID-19: a position paper of the ESC working group for atherosclerosis and vascular biology, and the ESC council of basic cardiovascular science. Cardiovasc Res. 2020;116(14):2177-84. doi: 10.1093/cvr/cvaa230, PMID 32750108.

Aravani D, Foote K, Figg N, Finigan A, Uryga A, Clarke M. Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells. Apoptosis. 2020;25(9-10):648-62. doi: 10.1007/s10495-020-01622-4, PMID 32627119.

Harjai M, Bogra J, Kohli M, Pant AB. Is suppression of apoptosis a new therapeutic target in sepsis? Anaesth Intensive Care. 2013;41(2):175-83. doi: 10.1177/0310057X1304100207, PMID 23530784.

Bellesi S, Metafuni E, Hohaus S, Maiolo E, Marchionni F, D’Innocenzo S. Increased CD95 (Fas) and PD-1 expression in peripheral blood T lymphocytes in COVID-19 patients (Fas). Br J Haematol. 2020;191(2):207-11. doi: 10.1111/bjh.17034, PMID 32679621.

Sata M, Suhara T, Walsh K. Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand–induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol. 2000;20(2):309-16. doi: 10.1161/01.atv.20.2.309, PMID 10669625.

Upadhyay R, Arya S, Nandurkar P, Dandotiya D. Post-COVID cardiovascular manifestation among the Patients Attending Tertiary Care Hospital in Chhindwara: a qualitative study. Asian J Pharm Clin Res. 2022;15:172-6. doi: 10.22159/ajpcr.2022.v15i10.46139.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5, PMID 31986264.

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7, PMID 32007143.

Tan W, Aboulhosn J. The cardiovascular burden of coronavirus disease 2019 (COVID-19) with a focus on congenital heart disease. Int J Cardiol. 2020;309:70-7. doi: 10.1016/j.ijcard.2020.03.063, PMID 32248966.

Peng YD, Meng K, Guan HQ, Leng L, Zhu RR, Wang BY. [Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48(6):450-5. doi: 10.3760/cma.j.cn112148-20200220-00105, PMID 32120458.

Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531-8. doi: 10.1007/s00392-020-01626-9, PMID 32161990.

Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID‐19. J Cardiovasc Electrophysiol. 2020;31(5):1003-8. doi: 10.1111/jce.14479, PMID 32270559.

Si D, Du B, Ni L, Yang B, Sun H, Jiang N. Death, discharge and arrhythmias among patients with COVID-19 and cardiac injury. CMAJ. 2020;192(28):E791-8. doi: 10.1503/cmaj.200879, PMID 32586839.

Guo T, Fan Y, Chen M, Wu X, Zhang L, He T. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-8. doi: 10.1001/jamacardio.2020.1017, PMID 32219356.

Esfandiarei M, McManus BM. Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol. 2008;3:127-55. doi: 10.1146/annurev.pathmechdis.3.121806.151534, PMID 18039131.

Pirzada A, Mokhtar AT, Moeller AD. COVID-19 and myocarditis: what do we know so far? CJC Open. 2020;2(4):278-85. doi: 10.1016/j.cjco.2020.05.005, PMID 32691024.

Siripanthong B, Nazarian S, Muser D, Deo R, Santangeli P, Khanji MY. Recognizing COVID-19–related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17(9):1463-71. doi: 10.1016/j.hrthm.2020.05.001, PMID 32387246.

Lai YJ, Liu SH, Manachevakul S. Biomarkers in long COVID-19: a systematic review. Front Med (Lausanne). Front Media S.A.; 2023.

Sara JDS, Prasad M, Zhang M, Lennon RJ, Herrmann J, Lerman LO. High-sensitivity C-reactive protein is an independent marker of abnormal coronary vasoreactivity in patients with non-obstructive coronary artery disease. Am Heart J. 2017;190:1-11. doi: 10.1016/j.ahj.2017.02.035, PMID 28760202.

Gameil MA, Marzouk RE, Elsebaie AH, Rozaik SE. Long-term clinical and biochemical residue after COVID-19 recovery. Egypt Liver J. 2021;11(1):74. doi: 10.1186/s43066-021-00144-1, PMID 34777873.

Mainous AG, Rooks BJ, Orlando FA. The impact of initial COVID-19 episode inflammation among adults on mortality within 12 months post-hospital discharge. Front Med (Lausanne). 2022;9:891375. doi: 10.3389/fmed.2022.891375, PMID 35646997.

Teixeira BC, Lopes AL, Macedo RCO, Correa CS, Ramis TR, Ribeiro JL. Inflammatory markers, endothelial function and cardiovascular risk. J Vasc Bras. 2014;13(2):108-15. doi: 10.1590/jvb.2014.054.

Queiroz MAF, das Neves PFMD, Lima SS, Lopes JDC, Torres MKDS, Vallinoto IMVC. Cytokine profiles associated with acute COVID-19 and long COVID-19 syndrome. Front Cell Infect Microbiol. 2022;12:922422. doi: 10.3389/fcimb.2022.922422, PMID 35846757.

Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10. doi: 10.1001/jamacardio.2020.0950, PMID 32211816.

De Michieli L, Jaffe AS, Sandoval Y. Use and prognostic implications of cardiac troponin in COVID-19. Cardiol Clin. 2022;40(3):287-300. doi: 10.1016/j.ccl.2022.03.005, PMID 35851452.

Ford I, Shah ASV, Zhang R, McAllister DA, Strachan FE, Caslake M. High-sensitivity cardiac troponin, statin therapy, and risk of coronary heart disease. J Am Coll Cardiol. 2016;68(25):2719-28. doi: 10.1016/j.jacc.2016.10.020, PMID 28007133.

Sigurdardottir FD, Lyngbakken MN, Holmen OL, Dalen H, Hveem K, Røsjø H. Relative prognostic value of cardiac troponin I and C-reactive protein in the General Population (from the nord-trøndelag health [HUNT] study). Am J Cardiol. 2018;121(8):949-55. doi: 10.1016/j.amjcard.2018.01.004, PMID 29496193.

Jia X, Sun W, Hoogeveen RC, Nambi V, Matsushita K, Folsom AR. High-sensitivity troponin I and incident coronary events, stroke, heart failure hospitalization, and mortality in the ARIC study. Circulation. 2019;139(23):2642-53. doi: 10.1161/circulationaha.118.038772, PMID 31030544.

Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne C, Fonseca F. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the canakinumab anti-inflammatory thrombosis outcomes study. Eur Heart J. 2018;39(38):3499-507. doi: 10.1093/eurheartj/ehy310, PMID 30165610.

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119-31. doi: 10.1056/NEJMoa1707914, PMID 28845751.

Published

07-11-2023

How to Cite

JUSTYN, M., YULIANTI, T., & WILAR, G. (2023). LONG-TERM COVID-19 EFFECT TO ENDOTHELIAL DAMAGE TROUGH EXTRINSIC APOPTOSIS LED TO CARDIOVASCULAR DISEASE PROGRESSION: AN UPDATE REVIEW. International Journal of Applied Pharmaceutics, 15(6), 60–68. https://doi.org/10.22159/ijap.2023v15i6.48889

Issue

Section

Review Article(s)