FORMULATION AND CHARACTERIZATION OF GDL-BASED ARTESUNATE SOLID LIPID NANOPARTICLE
DOI:
https://doi.org/10.22159/ijap.2023v15i5.48913Keywords:
Malaria, RBCs, GlyceryldilaurateAbstract
Objective: The present research aimed to prepare and characterize glyceryl dilaurate (GDL) containing solid lipid nanoparticles (SLN) with tween 80 and lecithin as an emulsifier in which the artesunate drug was loaded.
Methods: SLNs were synthesized by solvent emulsification–diffusion technique. The formulation was characterized for size, size distribution, zeta potential, shape and morphology, and DSC. In vitro drug release studies were performed at pH 5.0 and pH 7.4 to mimic in vivo conditions. Hemolytic studies and In vitro, antiplasmodial activities were carried out. Plasmodium berghei (NK65 resistant strain) infected mice were used to test the in vivo antimalarial efficacy of SLN.
Results: SLN exhibited 327 nm average sizes with 0.164 PDI and-23.4 mV zeta potential. TEM images revealed a spherical structure. The entrapment efficiency of the ART was calculated as 85.68%. In vitro, drug release studies showed that entrapped drug was released in a weakly acidic environment (83.45% for ART). Hemolytic studies revealed that ART-GDL conjugate was stable and safe for parenteral delivery. IC50 value of the GDL-based ART-SLNs was calculated to be 0.32 µM. Furthermore, the GDL-based ART-SLNs resulted in enhanced parasite killing in P. berghei-infected mice and improved survivability as compared to free ART administration.
Conclusion: The present research allows safe and effective intravenous administration of artesunate. Thus GDL-Based ART-SLNs could be a potential drug delivery system for antimalarial therapy.
Downloads
References
World malaria report 2022: WHO; 2022.
Musoke D, Atusingwize E, Namata C, Ndejjo R, Wanyenze RK, Kamya MR. Integrated malaria prevention in low- and middle-income countries: a systematic review. Malar J. 2023;22(1):79. doi: 10.1186/s12936-023-04500-x, PMID 36879237.
Patel CA, Pande S, Shukla P, Ranch K, Al-Tabakha MM, Boddu SH. Antimalarial drug resistance: trends, mechanisms, and strategies to combat antimalarial resistance. Malarial drug delivery systems: advances in treatment of infectious diseases. Springer; 2023. p. 43-69. doi: 10.1007/978-3-031-15848-3_3.
Ramteke S, Ubnare R, Dubey N, Singh A. Intranasal delivery of artemether for the treatment of cerebral malaria. Int J Pharm Pharm Sci. 2018;10(9):9. doi: 10.22159/ijpps.2018v10i9.25408.
Anamika J, Nikhar V, Laxmikant G, Priya S, Sonal V, Vyas SP. Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: options and opportunity. Drug Deliv Transl Res. 2020;10(4):1095-110. doi: 10.1007/s13346-020-00770-z, PMID 32378173.
Bonsergent M, Tching Sin M, Honore S, Bertault Peres P, Lepelletier A, Flet L. Use of artesunate in the treatment of severe imported malaria in france: review of the effectiveness and real-life safety in two French university hospitals. BMC Infect Dis. 2023;23(1):359. doi: 10.1186/s12879-023-08260-6, PMID 37231336.
Goodman C, Tougher S, Shang TJ, Visser T. Improving malaria case management with artemisinin-based combination therapies and malaria rapid diagnostic tests in private medicine retail outlets in sub-Saharan Africa: a systematic review; 2023. doi: 10.1101/2023.05.23.23290407.
Marwa KJ, Kapesa A, Kamugisha E, Swedberg G. The influence of cytochrome P450 polymorphisms on pharmacokinetic profiles and treatment outcomes among malaria patients in Sub-Saharan Africa: a systematic review. Pharmgenomics Pers Med. 2023;16:449-61. doi: 10.2147/PGPM.S379945, PMID 37223718.
Niederreiter M, Klein J, Arndt K, Werner J, Mayer B. Anti-cancer effects of artesunate in human 3D tumor models of different complexity. Int J Mol Sci. 2023;24(9):7844. doi: 10.3390/ijms24097844, PMID 37175551.
Adebayo AH, Okenze GN, Yakubu OF, Abikoye ME. Biochemical and histopathological effects of coadministration of amodiaquine, artesunate, and selenium on plasmodium berghei infected mice. Asian J Pharm Clin Res. 2018;11(15):1-4. doi: 10.22159/ajpcr.2018.v11s3.29963.
Shukla M, Rathi K, Hassam M, Yadav DK, Karnatak M, Rawat V. An overview on the antimalarial activity of 1,2,4-trioxanes, 1,2,4-trioxolanes and 1,2,4,5-tetraoxanes. Med Res Rev. 2023;1(2):2-4. doi: 10.1002/med.21979, PMID 37222435.
Li Y, Xu E, Rong R, Zhang S, Yuan WE, Qiu M. Glutaraldehyde modified red blood cells delivering artesunate to the liver as a dual therapeutic and prophylactic antimalaria strategy. J Mater Chem B. 2023. doi: 10.1039/D3TB00315A, PMID 37458002.
Khairnar SV, Pagare P, Thakre A, Nambiar AR, Junnuthula V, Abraham MC. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics. 2022;14(9):1886. doi: 10.3390/pharmaceutics14091886, PMID 36145632.
Priyanka P, Sri Rekha M, Devi AS. Review on formulation and evaluation of solid lipid nanoparticles for vaginal application. Int J Pharm Pharm Sci. 2022;14(1):1-8. doi: 10.22159/ijpps.2022v14i1.42595.
Almawash S. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs. Saudi Pharm J. 2023;31(7):1167-80. doi: 10.1016/j.jsps.2023.05.011, PMID 37273269.
Gugleva V, Andonova V. Recent progress of solid lipid nanoparticles and nanostructured lipid carriers as ocular drug delivery platforms. Pharmaceuticals (Basel). 2023;16(3):474. doi: 10.3390/ph16030474, PMID 36986574.
Xu Y, Lv Y, Zhao H, He X, Li X, Yi S. Diacylglycerol pre-emulsion prepared through ultrasound improves the gel properties of golden thread surimi. Ultrason Sonochem. 2022;82:105915. doi: 10.1016/j.ultsonch.2022.105915. PMID 35042162.
Tang CH, Chen HL, Dong JR. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as food-grade nanovehicles for hydrophobic nutraceuticals or bioactives. Appl Sci. 2023;13(3):1726. doi: 10.3390/app13031726.
Kamarullah W, Indrajaya E, Emmanuella J. Potency of luteolin with solid lipid nanoparticle (SLN)-polyethylene glycol (PEG) modification for artemisinin-resistant plasmodium falciparum infection. Indonesian J Trop Infect Dis. 2018;7(3):80. doi: 10.20473/ijtid.v7i3.6726.
Boonme P, Souto EB, Wuttisantikul N, Jongjit T, Pichayakorn W. Influence of lipids on the properties of solid lipid nanoparticles from microemulsion technique. Eur J Lipid Sci Technol. 2013;115(7):820-4. doi: 10.1002/ejlt.201200240.
Gardouh A. Design and characterization of glyceryl monostearate solid lipid nanoparticles prepared by high shear homogenization. Br J Pharm Res. 2013;3(3):326-46. doi: 10.9734/BJPR/2014/2770.
Kumar R, Singh A, Sharma K, Dhasmana D, Garg N, Siril PF. Preparation, characterization and in vitro cytotoxicity of fenofibrate and nabumetone-loaded solid lipid nanoparticles. Mater Sci Eng C Mater Biol Appl. 2020;106:110184. doi: 10.1016/j.msec.2019.110184, PMID 31753394.
Shi C, Zhang Z, Shi J, Wang F, Luan Y. Co-delivery of docetaxel and chloroquine via PEO–PPO–PCL/TPGS micelles for overcoming multidrug resistance. Int J Pharm. 2015;495(2):932-9. doi: 10.1016/j.ijpharm.2015.10.009. PMID 26456262.
Chadha R, Gupta S, Pathak N. Artesunate-loaded chitosan/lecithin nanoparticles: preparation, characterization, and in vivo studies. Drug Dev Ind Pharm. 2012;38(12):1538-46. doi: 10.3109/03639045.2012.658812, PMID 22348223.
Cavalli R, Caputo O, Marengo E, Pattarino F, Gasco MR. The effect of the components of microemulsions on both size and crystalline structure of solid lipid nanoparticles (SLN) containing a series of model molecules. Pharmazie. 1998;53(6):392-6.
Kheradmandnia S, Vasheghani Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine. 2010;6(6):753-9. doi: 10.1016/j.nano.2010.06.003. PMID 20599527.
Manjili HK, Malvandi H, Mousavi MS, Attari E, Danafar H. In vitro and in vivo delivery of artemisinin loaded PCL–PEG–PCL micelles and its pharmacokinetic study. Artif Cells Nanomed Biotechnol. 2018;46(5):926-36. doi: 10.1080/21691401.2017.1347880, PMID 28683649.
Cavalli R, Peira E, Caputo O, Gasco MR. Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with β-cyclodextrins. Int J Pharm. 1999;182(1):59-69. doi: 10.1016/s0378-5173(99)00066-6, PMID 10332075.
Carbone C, Fuochi V, Zielinska A, Musumeci T, Souto EB, Bonaccorso A. Dual-drugs delivery in solid lipid nanoparticles for the treatment of candida albicans mycosis. Colloids Surf B Biointerfaces. 2020;186:110705. doi: 10.1016/j.colsurfb.2019.110705. PMID 31830707.
Nagasaka Y, Ishii F. Interaction between erythrocytes from three different animals and emulsions prepared with various lecithins and oils. Colloids Surf B Biointerfaces. 2001;22(2):141-7. doi: 10.1016/s0927-7765(01)00148-5, PMID 11451660.
Joshi M, Pathak S, Sharma S, Patravale V. Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: Nanoject. Int J Pharm. 2008;364(1):119-26. doi: 10.1016/j.ijpharm.2008.07.032, PMID 18765274.
Jumaa M, Kleinebudde P, Muller BW. Physicochemical properties and hemolytic effect of different lipid emulsion formulations using a mixture of emulsifiers. Pharm Acta Helv. 1999;73(6):293-301. doi: 10.1016/S0031-6865(99)00003-5.
Ismail M, Du Y, Ling L, Li X. Artesunate-heparin conjugate based nanocapsules with improved pharmacokinetics to combat malaria. Int J Pharm. 2019;562:162-71. doi: 10.1016/j.ijpharm.2019.03.031. PMID 30902709.
Masiiwa WL, Gadaga LL. Intestinal permeability of artesunate-loaded solid lipid nanoparticles using the everted gut method. J Drug Deliv. 2018;2018:3021738. doi: 10.1155/2018/3021738, PMID 29854465.
Schubert MA, Muller Goymann CC. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm. 2005;61(1-2):77-86. doi: 10.1016/j.ejpb.2005.03.006. PMID 16011893.
Kumar S, Randhawa JK. Preparation and characterization of paliperidone-loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2013;102:562-8. doi: 10.1016/j.colsurfb.2012.08.052, PMID 23104026.
Ibrahim N, Ibrahim H, Sabater AM, Mazier D, Valentin A, Nepveu F. Artemisinin nanoformulation suitable for intravenous injection: preparation, characterization and antimalarial activities. Int J Pharm. 2015;495(2):671-9. doi: 10.1016/j.ijpharm.2015.09.020, PMID 26383839.
Manjili HK, Malvandi H, Mousavi MS, Attari E, Danafar H. In vitro and in vivo delivery of artemisinin loaded PCL–PEG–PCL micelles and its pharmacokinetic study. Artif Cells Nanomed Biotechnol. 2018;46(5):926-36. doi: 10.1080/21691401.2017.1347880, PMID 28683649.
Kumar S, Randhawa JK. High melting lipid-based approach for drug delivery: solid lipid nanoparticles. Mater Sci Eng C Mater Biol Appl. 2013;33(4):1842-52. doi: 10.1016/j.msec.2013.01.037, PMID 23498204.
Kelidari HR, Saeedi M, Akbari J, Morteza Semnani K, Gill P, Valizadeh H. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2015;128:473-9. doi: 10.1016/j.colsurfb.2015.02.046, PMID 25797482.
Published
How to Cite
Issue
Section
Copyright (c) 2023 ANAMIKA JAIN, S. P. VYAS
This work is licensed under a Creative Commons Attribution 4.0 International License.