MICROENCAPSULATION OF SCHLEICHERA OLEOSA L. LEAF EXTRACT IN MAINTAINING THEIR BIOLOGICAL ACTIVITY: ANTIOXIDANT AND HEPATOPROTECTIVE
DOI:
https://doi.org/10.22159/ijap.2023v15i6.48960Keywords:
Microencapsulation, Schleichera oleosa L., Polyvinyl alcohol, Ethocel 10 cP, Fluid bed coating, Antioxidant, HepatoprotectiveAbstract
Objective: Schleichera oleosa L. leaf extract has been studied to have antioxidant activity due to the presence of phenolic compounds, especially flavonoids. Flavonoid compounds that have potential as antioxidants are generally unstable and rapidly degraded due to the influence of moisture, heat, light, oxygen, and other reactive components. Microencapsulation is an effective method for maintaining the stability of bioactive compounds. This study aims to formulate S. oleosa leaf extract microcapsules and test their stability based on the results of physical characterization, antioxidant, and hepatoprotective activities.
Methods: The microencapsulation process of S. oleosa leaf extract was carried out using a fluid bed coating using a polyvinyl alcohol matrix and Ethocel 10 cP. Stability test using a climatic chamber at 40 °C for 90 d. Physical characteristics consist of drying shrinkage, flow rate, angle of repose, compressibility, particle size, and scanning electron microscope (SEM) picture. Antioxidant activity was tested in vitro using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, and hepatoprotective activity was tested using the paracetamol-induced hepatotoxicity method in rats.
Results: The results showed that the microcapsules, after stability testing, could maintain the total phenolic content and antioxidant activity in the strong category with IC50 values ranging from 50 to 100 ppm. The results of the hepatoprotective activity test of S. oleosa leaf extract microcapsules tested on days 0 and 90 (after stability testing) could significantly reduce SGOT and SGPT levels compared to negative controls after being induced with paracetamol. Still, this effect was lower than that of curcumin, which is known to be hepatoprotective.
Conclusion: The application of the microencapsulation method to S. oleosa leaf extract plays an essential role in maintaining physical stability and maintaining its biological activity as an antioxidant and hepatoprotector.
Downloads
References
Muthukrishnan S, Sivakkumar T. Physicochemical evaluation, preliminary phytochemical investigation, fluorescence and TLC analysis of leaves of Schleichera oleosa (Lour.) Oken. Indian J Pharm Sci. 2018;80(3):525-32. doi: 10.4172/pharmaceutical-sciences.1000387.
Situmeang B, Nuraeni W, Ibrahim AM. Analysis of secondary metabolite compounds from leaves extract kesambi (Schleichera oleosa) and antioxidant activity test. J Pendidik Kim. 2018;8(Dec 2016):164-8.
Salem GA, Shaban A, Diab HA, Elsaghayer WA, Mjedib MD, Hnesh AM. Phoenix dactylifera protects against oxidative stress and hepatic injury induced by paracetamol intoxication in rats. Biomed Pharmacother. 2018;104:366-74. doi: 10.1016/j.biopha.2018.05.049, PMID 29778019.
Mbaoji FN, Nweze JA. Antioxidant and hepatoprotective potentials of active fractions of Lannea barteri Oliv. (Anarcadiaceae) in rats. Heliyon Heliyon. 2020;6(6):e04099. doi: 10.1016/j.heliyon.2020.e04099, PMID 32577550.
Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B. Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int J Pharm Sci Rev Res. 2010;3:91-100.
Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5(35):27986-8006. doi: 10.1039/C4RA13315C.
Thind TS, Singh R, Kaur R, Rampal G, Arora S. In vitro antiradical properties and total phenolic contents in methanol extract/fractions from bark of Schleichera oleosa (Lour.) Oken. Med Chem Res. 2011;20(2):254-60. doi: 10.1007/s00044-010-9297-2.
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Hindawi Publishing; 2013. doi: 10.1155/2013/162750.
Zulham ZZ, Wilar G, Susilawati Y, Subarnas A, Chaerunisaa AY. Microparticles of herbal extracts with antioxidant activity. Pharmacogn J. 2021;13(1):285-95. doi: 10.5530/pj.2021.13.38.
Cabral BRP, de Oliveira PM, Gelfuso GM, Quintao TdSC, Chaker JA, Karnikowski MGdO. Improving stability of antioxidant compounds from Plinia cauliflora (jabuticaba) fruit peel extract by encapsulation in chitosan microparticles. J Food Eng. 2018;238:195-201. doi: 10.1016/j.jfoodeng.2018.06.004.
Muhaimin M, Latifah N, Chaerunisaa AY, Amalia E, Rostinawati T. Preparation and characterization of Sonneratia A. Leaf extract microcapsules by solvent evaporation technique. Int J App Pharm. 2022;14(6):77-82. doi: 10.22159/ijap.2022v14i6.46274.
Sukmawati A, Nurwaini S, Rahayu UB, Widawan APC, Safitri A, Astria NWN. Investigating betanin stability, release profile and antioxidant activity of ethyl cellulose microparticle containing beetroot (Beta vulgaris, linn) extract. Int J App Pharm. 2021;13(6):133-8. doi: 10.22159/ijap.2021v13i6.42848.
Li YO, Gonza D, Diosady LL. Microencapsulation of vitamins, minerals, and nutraceuticals for food applications; 2013. p. 501-22. doi: 10.1016/B978-0-12-404568-2.00038-8.
Lauro MR, Crasci L, Giannone V. An alginate/cyclodextrin spray drying matrix to improve shelf life and antioxidant efficiency of a blood orange by-product extract rich in polyphenols: MMPs inhibition and antiglycation activity in dysmetabolic diseases. Hindawi Publishing; 2017.
Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chem. 2019;272:494-506. doi: 10.1016/j.foodchem.2018.07.205, PMID 30309574.
Saikiran KCS, Perli M, Reddy NS, Venkatachalapathy N. Mechanical methods of microencapsulation: a review. Int J Curr Microbiol App Sci. 2018;7(11):1251-60. doi: 10.20546/ijcmas.2018.711.146.
Ballesteros LF, Ramirez MJ, Orrego CE, Teixeira JA, Mussatto SI. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem. 2017;237:623-31. doi: 10.1016/j.foodchem.2017.05.142, PMID 28764044.
Ventura JM. Microencapsulation of ellagic acid from pomegranate husk and karaya. Int J Pharm Pharm Sci. 2015;7:10-3.
Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. 2018;13:20. doi: 10.1186/s13020-018-0177-x, PMID 29692864.
Sriwidodo S, Pratama R, Umar AK, Chaerunisa AY, Ambarwati AT, Wathoni N. Preparation of mangosteen peel extract microcapsules by fluidized bed spray-drying for tableting: improving the solubility and antioxidant stability. Antioxidants (Basel). 2022;11(7). doi: 10.3390/antiox11071331, PMID 35883823.
Blainski A, Lopes GC, De Mello JCP. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules. 2013;18(6):6852-65. doi: 10.3390/molecules18066852, PMID 23752469.
Marinova G, Batchvarov V. Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulg J Agric Sci. 2011;17(1):11-24.
Partial INF, Requirements THE, FOR D, Science MOF. Encapsulation of orange oil using fluidized bed granulation; 2019.
Murtaza G. Ethylcellulose microparticles: a review. Acta Pol Pharm. 2012;69(1):11-22. PMID 22574502.
Frey C. Fluid bed coating-based microencapsulation. Elsevier Inc; 2014. doi: 10.1016/B978-0-12-404568-2.00007-8.
Guignon B, Duquenoy A, Dumoulin ED. Fluid bed encapsulation of particles: principles and practice. Drying Technology. 2002;20(2):419-47. doi: 10.1081/DRT-120002550.
Hoyos leyva JD, Bello Perez LA, Alvarez Ramirez J, Garcia HS. Microencapsulation using starch as wall material: a review. Food Rev Int. 2018;34(2):148-61. doi: 10.1080/87559129.2016.1261298.
Wang R, Li M, Liu X, Sun Y. Preparation of composite fabric loaded with microencapsulated plant extracts and its inhibitory effect on lipase. PRT. 2019;48(3):202-9. doi: 10.1108/PRT-12-2017-0104.
Nazzaro F, Orlando P, Fratianni F, Coppola R. Microencapsulation in food science and biotechnology. Curr Opin Biotechnol. 2012;23(2):182-6. doi: 10.1016/j.copbio.2011.10.001, PMID 22024623.
Muhaimin M, Yusnaidar Y, Syahri W, Latief M, Chaerunisaa AY. Microencapsulation of macaranga gigantea leaf extracts: production and characterization. PJ. 2020;12(4):716-24. doi: 10.5530/pj.2020.12.104.
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: therapeutic updates and future prospects. Food Chem Toxicol. 2019;124:182-91. doi: 10.1016/j.fct.2018.12.002, PMID 30529260.
Rotundo L, Pyrsopoulos N. Liver injury induced by paracetamol and challenges associated with intentional and unintentional use. World J Hepatol. 2020;12(4):125-36. doi: 10.4254/wjh.v12.i4.125, PMID 32685105.
Mirza N. Paracetamol-induced hepatotoxicity, edited: Costin Teodor Streba CT, Rogoveanu I, Vere CC. Vol 11; 2022. doi: 10.5772/intechopen.104729.
Katiyar NS, Singh AP, Gangwar AK, Rao NV. Evaluation of hepatoprotective activity of stem extracts of Cuscuta reflexa (ROXB) in rats. Int J Pharm Pharm Sci. 2015;7(6):231-4.
Jajo H, Ghosh R. Hepatoprotective activity of the whole plant of Neptunia prostrata L. in carbon tetrachloride induced rats. Int J Curr Pharm Sci. 2021;13(6):56-9. doi: 10.22159/ijcpr.2021v13i6.1913.
Published
How to Cite
Issue
Section
Copyright (c) 2023 ZULHAM, ANIS YOHANA CHAERUNISAA, ANAS SUBARNAS, YOGA WINDHU WARDHANA, YASMIWAR SUSILAWATI
This work is licensed under a Creative Commons Attribution 4.0 International License.