OCULAR INSERETS AS A MODERN THERAPY TREND IN OPTHALMOPATHOLOGY

Authors

  • ANASTASIA TURAEVA I. M. Sechenov First Moscow State Medical University (Sechenov University), Russia https://orcid.org/0000-0003-0707-4574
  • ELENA BAKHRUSHINA I. M. Sechenov First Moscow State Medical University (Sechenov University), Russia
  • DIANA ZHALYALOVA I. M. Sechenov First Moscow State Medical University (Sechenov University), Russia https://orcid.org/0009-0005-7519-3876
  • TATYANA KOROCHKINA I. M. Sechenov First Moscow State Medical University (Sechenov University), Russia
  • OLGA STEPANOVA I. M. Sechenov First Moscow State Medical University (Sechenov University), Russia
  • IVAN KRASNYUK I. M. Sechenov First Moscow State Medical University (Sechenov University), Russia

DOI:

https://doi.org/10.22159/ijap.2023v15i6.49037

Keywords:

Ocular insert, Polymers, Quality tests, Dosage form development, Ocular insert manufacturing

Abstract

Ocular insert (OI) has its wide recognition and importance from the 19th century around the world, the use of this dosage form in clinical practice was distributed throughout the USSR. The key issue covered in this review is the development of the ocular insert and their testing by specific parameters of quality. It is important to choose the right excipients and standardize ocular inserts according to pharmacopoeia articles (thickness, pH, biodegradation time). It is also important to control those indicators that increase patient compliance. Technology of solid dosage form consists of several stages: mixing, drying and cutting with packaging in primary polymer packaging. So the manufacturer does not need highly specialized equipment and staff skills. Based on this information, we can concluded that ocular inserts are promising and actively researched dosage form, which in the future, could fully complement or replace the medical drugs traditionally used in ophthalmology.

Downloads

Download data is not yet available.

References

Kumari A, Sharma PK, Garg VK, Garg G. Ocular inserts–advancement in therapy of eye diseases. J Adv Pharm Technol Res. 2010 Jul;1(3):291-6. doi: 10.4103/0110-5558.72419, PMID 22247860.

Anshul S, Renu S. A review on levofloxacin in situ-gel formulation. Asian J Pharm Clin Res. 2015 Jan;8(1):37-41.

Farkouh A, Frigo P, Czejka M. Systemic side effects of eye drops: a pharmacokinetic perspective. Clin Ophthalmol. 2016 Dec 7;10:2433-41. doi: 10.2147/OPTH.S118409, PMID 27994437.

Aznabaev MT, Azamatova GA, Gya G. Ophthalmic medicinal films in the prevention of infectious and inflammatory complications. Saratov J Med Sci Res. 2018;14(4):933-8.

Cholkar K, Patel SP, Vadlapudi AD, Mitra AK. Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther. 2013 Mar 13;29(2):106-23. doi: 10.1089/jop.2012.0200, PMID 23215539.

Noori MM, Al-Shohani ADH, Yousif NZ. Fabrication and characterization of new combination ocular insert for the combined delivery of tinidazole and levofloxacin. Mater Today Proc. 2023;80:2652-9. doi: 10.1016/j.matpr.2021.07.008.

Gupta VK, Deshpande A, Nayak K, Jain N. Comparative study of patient package insert of marketed brands of antibiotic eye drops. Asian J Pharm Clin Res. 2022 Jul;15(7):194-6. doi: 10.22159/ajpcr.2022.v15i7.45804.

Bakhrushina EO, Anurova MN, Demina NB, Lapik IV, Turaeva AR, Krasnuk II. Ophthalmic drug delivery systems (Review). Razrabotka I Registracia Lekarstvennyh Sredstv. 2021 Feb 25;10(1):57-66. doi: 10.33380/2305-2066-2021-10-1-57-66.

Saettone MF. Solid polymeric inserts/disks as ocular drug delivery systems. In: Edman P. editor. Biopharmaceutics of ocular drug delivery. Boca Raton: CRC Press; 1993. p. 61-79.

Pollack IP, Quigley HA, Harbin TS. The ocusert pilocarpine system: advantages and disadvantages. South Med J. 1976 Oct;69(10):1296-8. doi: 10.1097/00007611-197610000-00013, PMID 982104.

Wroblewska KB, Jadach B, Muszalska Kolos I. Progress in drug formulation design and delivery of medicinal substances used in ophthalmology. Int J Pharm. 2021 Sep 25;607:121012. doi: 10.1016/j.ijpharm.2021.121012, PMID 34400274.

GRLS-State Register of Medicines of Russian Federation; 2023.

FDA–US. Food and Drug Administration. Available from: https://www.accessdata.fda.gov. [Last accessed on 29 Jul 2023]

ANSM-National Agency for the Safety of Medicines and Health Products of France. Available from: http://agence-prd.ansm.sante.fr. [Last accessed on 29 Jul 2023]

CIM A. Spanish agency for medicines and medical devices; 2023.

Swedish Medical LT, Products Agency. Lakemedelsverket; 2023.

FIMEA-Finnish Medicines Agency; 2023.

Primary contour cell-free packaging of Mydriasert®. Available from: https://www.shop-apotheke.com/arzneimittel/7532958/mydriasert-0-28-mg-5-4-mg.htm.

Lacrisert®. How to use Lacrisert®; 2023. Available from: https://www.lacrisert.com/using-lacrisert.

Dextenza®. Available from: https://www.dextenza.com. [Last accessed on 29 Jul 2023]

Korobelnik JF, Tavera C, Renaud Rougier MB, El Meski S, Colin J. The Mydriasert insert: an alternative to eye drops for preangiographic mydriasis. J Fr Ophtalmol. 2004 Oct;27(8):897-902. doi: 10.1016/s0181-5512(04)96233-x, PMID 15547470.

Bremond Gignac D, Jacqz Aigrain E, Abdoul H, Daruich A, Beresniak A, Baud O. Ophthalmic insert versus eye drops for mydriasis in neonates: a randomized clinical trial. Neonatology. 2019;115(2):142-8. doi: 10.1159/000493723, PMID 30481790.

Azamatova GA. Experimental substantiation of the method of prevention of infection complications of cataract surgery [dissertation]. Krasnoyarsk: Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University; 2011.

Ibach MJ, Zimprich L, Wallin DD, Olevson C, Puls-Boever K, Thompson V. In clinic optometrist insertion of dextenza (Dexamethasone ophthalmic insert 0.4mg) prior to cataract surgery: the prepare study. Clin Ophthalmol. 2022 Aug 13;16:2609-15. doi: 10.2147/OPTH.S374405, PMID 35992569.

Hovanesian JA, Keyser A, Berdy G, Sorensen R. The DEPOT study (Dry Eye Prescription Options for Therapy): assessing the efficacy and safety of OTX-DED (Dexamethasone ophthalmic insert 0.3 mg) for intracanalicular use compared with loteprednol suspension for the treatment of episodic dry eye. Clin Ophthalmol. 2022 Nov 21;16:3841-9. doi: 10.2147/OPTH.S387111, PMID 36438591.

AR T, EO B, II K. Research of the excipients effect for polymer basis in ocular insert development. Mediko Farmacevticeskij Zurnal Puls 2022;24:33-9. doi: 10.26787/nydha-2686-6838-2022-24-7-33-39.

Dhaka M, Mazumdar R, Haque MR. Preparation and assessment of ocular inserts containing sulbactum for controlled drug delivery. J Drug Delivery Ther 2020;10(1-s):66-71. doi: 10.22270/jddt.v10i1-s.3889.

Alambiaga Caravaca AM, Domenech Monsell IM, Sebastian Morello M, Calatayud Pascual MA, Merino V, Rodilla V. Development, characterization, and ex vivo evaluation of an insert for the ocular administration of progesterone. Int J Pharm. 2021 Sep 5;606:120921. doi: 10.1016/j.ijpharm.2021.120921, PMID 34303817.

Rathod LV, Kapadia R, Sawant KK. A novel nanoparticles impregnated ocular insert for enhanced bioavailability to posterior segment of eye: in vitro, in vivo and stability studies. Mater Sci Eng C Mater Biol Appl. 2017;71:529-40. doi: 10.1016/j.msec.2016.10.017, PMID 27987741.

Chourasia A, Agrawal S. Development and evaluation of ciprofloxacin hydrochloride loaded ocular insert by using ”Plantago ovata” as natural polymer. Int J Curr Pharm Sci. 2018 Jul;10(4):79-88. doi: 10.22159/ijcpr.2018v10i4.28474.

Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules. 2008 Jul;9(7):1837-42. doi: 10.1021/bm800276d, PMID 18540644.

Lozbina NV, Bolshakov IN, Lazarenko VI. Properties of chitosan and its using in ophthalmology. SMR. 2015;5(5):5-13. doi: 10.20333/25000136-2015-5-5-13.

Fulgencio GDO, Viana FAB, Ribeiro RR, Yoshida MI, Faraco AG, Cunha-Júnior ADS. New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. J Ocul Pharmacol Ther. 2012;28(4):350-8. doi: 10.1089/jop.2011.0174, PMID 22320419.

Karmakar S, Manna S, Kabiraj S, Jana S. Recent progress in alginate-based carriers for ocular targeting of therapeutics. Food Hydrocolloids for Health. 2022;2. doi: 10.1016/j.fhfh.2022.100071.

Mohammad Sadeghi A, Farjadian F, Alipour S. Sustained release of linezolid in ocular insert based on lipophilic modified structure of sodium alginate. Iran J Basic Med Sci. 2021 Mar;24(3):331-40. doi: 10.22038/ijbms.2021.49866.11385, PMID 33995944.

Alekseev KV, Blynskaya EV, Tihonova NV, Alekseev VK, Uvarov NA, Chernova OA. Polymers in modified-release drug delivery technology. Russ J Gen Chem. 2010;54(6):87-93.

Muppalaneni S. Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 2013;2(3):2-5. doi: 10.4172/2329-6631.1000112.

Tundisi LL, Mostaco GB, Carricondo PC, Petri DFS. Hydroxypropyl methylcellulose: physicochemical properties and ocular drug delivery formulations. Eur J Pharm Sci. 2021 Apr 1;159:105736. doi: 10.1016/j.ejps.2021.105736, PMID 33516807.

Wasilewska K, Winnicka K. Ethylcellulose a pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials (Basel). 2019 Oct 17;12(20):3386. doi: 10.3390/ma12203386, PMID 31627271.

Ravindran VK, Repala S, Subadhra S, Appapurapu AK. Chick chorioallantoic membrane model for in ovo evaluation of timolol maleate-brimonidine tartrate ocular inserts. Drug Deliv. 2014 Jun;21(4):307-14. doi: 10.3109/10717544.2013.845272, PMID 24134746.

Ivanov IS, Bakhrushina EO, Turaeva AR, Shatalov DO, Aydakova AV, Akhmedova DA. Approaches to the search of the optimum packaging of eye drops. Int J App Pharm. 2022 Sep 8;14(5):1-7. doi: 10.22159/ijap.2022v14i5.45402.

Horita S, Watanabe M, Katagiri M, Nakamura H, Haniuda H, Nakazato T. Species differences in ocular pharmacokinetics and pharmacological activities of regorafenib and pazopanib eye-drops among rats, rabbits and monkeys. Pharmacol Res Perspect. 2019 Nov 20;7(6):e00545. doi: 10.1002/prp2.545, PMID 31763044.

Khan SA, Ma X, Jermain SV, Ali H, Khalil IA, El Fouly M. Sustained release biocompatible ocular insert using hot melt extrusion technology: fabrication and in vivo evaluation. J Drug Deliv Sci Technol. 2022 Apr;71(3):103333. doi: 10.1016/j.jddst.2022.103333.

Jadhav RL, Sonwalkar SG, Gurav YA, Patil MV, Shaikh SN. Formulation optimization and evaluation of ocular inserts prepared with sulfoxyamine modified chitosan. Asian J Pharm. 2020 Sep 30;14(2):195-205.

Turaeva AR, Bakhrushina EO, Demina NB, Krasnyuk II. Selection and justification of drying in ocular insert development. Probl biol. J Med Pharm Chem. 2023;26(6):10-6. doi: 10.29296/25877313-2023-06-02.

Matejtschuk P, Phillips P, Andersen M. Freeze-drying of biological standards in lyophilization of pharmaceutical and biological products. 2nd ed. Boca Raton: CRC Press Inc; 2004.

Turaeva AR, Bakhrushina EO, Anurova MN, Aleshkin AV. Bacteriophage delivery systems for the treatment of ocular infections. In: Kurkin VA. editor. Pharmaceutical education of Sam SMU. History, modernity, perspectives. Proceedings of the All-Russian scientific and practical online conference devoted to the fiftieth anniversary of the of pharmaceutical education of Sam SMU; 2021. p. 179-84.

Aulton ME, Taylor KMG. Aulton's pharmaceutics: the design and manufacture of medicines. 6th ed. Elsevier Health Sciences; 2022.

Single use tweezer; 2023. Available from: https://www.buerkle.de/en/single-use-tweezers-blue#similar. [Last accessed on 25 Aug 2023]

Taghe S, Mirzaeei S, Ahmadi A. Preparation and evaluation of nanofibrous and film-structured ciprofloxacin hydrochloride inserts for sustained ocular delivery: pharmacokinetic study in rabbit’s eye. Life (Basel). 2023 Mar 30;13(4):913. doi: 10.3390/life13040913, PMID 37109442.

Mizina PG, Kurkin VA, Byakov MA, Purygin PP. A device for determining the adhesion of medicinal films in vitro. Pharm Chem J. 2001;35(8):450-2. doi: 10.1023/A:1013744608820.

Kendre PN, Kadam PD, Jain SP, Vibhute SK, Pote AK. Design, fabrication, and characterization of graft co-polymer assisted ocular insert: a state of art in reducing post-operative pain. Drug Dev Ind Pharm. 2020 Dec;46(12):1988-99. doi: 10.1080/03639045.2020.1833908, PMID 33026260.

Sushinskaya OA, Golyak NS, Tsarenkov VM. Methods for studying the release of active substances from external drug forms. Vestn Pharmacii. 2019;86(4):86-96.

Mariz M, Murta J, Gil MH, Ferreira P. An ocular insert with zero-order extended delivery: release kinetics and mathematical models. Eur J Pharm Biopharm. 2022 Dec;181:79-87. doi: 10.1016/j.ejpb.2022.10.023, PMID 36351492.

Stepanova EF, Stepanyuk SN, Taranenco SV. The development of composition, technology and standardization of ophthalmologic medicinal forms including orthophenum. Adv Curr Nat Sci. 2002;3:21-7.

Published

07-11-2023

How to Cite

TURAEVA, A., BAKHRUSHINA, E., ZHALYALOVA, D., KOROCHKINA, T., STEPANOVA, O., & KRASNYUK, I. (2023). OCULAR INSERETS AS A MODERN THERAPY TREND IN OPTHALMOPATHOLOGY. International Journal of Applied Pharmaceutics, 15(6), 45–52. https://doi.org/10.22159/ijap.2023v15i6.49037

Issue

Section

Review Article(s)

Most read articles by the same author(s)