PREPARATION, CHARACTERIZATION AND EVALUATION OF MYRICETIN-LOADED NANOEMULSION FOR THERAPEUTIC EFFICACY IN WOUND HEALING

Authors

  • TANVIR YUSUF SHAIKH Sri Sathya Sai Institute of Pharmaceutical Sciences, Ram Krishna Dharmarth Foundation University, Gandhi Nagar, Bhopal-462033, Madhya Pradesh, India
  • SANTRAM LODHI Sri Sathya Sai Institute of Pharmaceutical Sciences, Ram Krishna Dharmarth Foundation University, Gandhi Nagar, Bhopal-462033, Madhya Pradesh, India https://orcid.org/0000-0002-7344-8573

DOI:

https://doi.org/10.22159/ijap.2024v16i1.49112

Keywords:

Myricetin, Nanoemulsion, Gel, Tween-20, Polyethylene glycol-400, Wound healing

Abstract

Objective: Aim of the present study was the development, optimization and evaluation of myricetin-loaded nanoemulsion gel for wound healing.

Methods: Myricetin nanoemulsion was prepared by selecting Peanut oil as oil (wt %), Tween 20 and Polyethylene glycol 400 as surfactant and cosurfactant (Smix) and aqueous phase water. Performance of nanoemulsion gel was evaluated by wound healing activity tested against wound contraction, hydroxyproline content, protein content and antioxidant assay.

Results: The optimized nanoemulsion (NEF1) exhibited appreciable stability concerning droplet size and PDI when stored at 5 ᵒC, 25 ᵒC and 40ᵒC up to three months. Morphological characterization by TEM indicated a spherical shape. Wound healing effect was observed through a significant (p<0.5) increase in hydroxyproline content, protein content and antioxidant status in wound tissue. The level of superoxide dismutase (SOD) and catalase were found to increase significantly in wound tissue after treatment with Myricetin loaded nanoemulsion (MYCT-NE) gel, as well as results were comparable to Betadine cream.

Conclusion: In conclusion, MYCT-NE gel was found potent wound healing effect through the reduction of oxidative stress and epithelialization of tissue.

Downloads

Download data is not yet available.

References

Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585-601. doi: 10.1111/j.1524-475X.2008.00410.x, PMID 19128254.

Latif MS, Nawaz A, Asmari M, Uddin J, Ullah H, Ahmad S. Formulation development and in vitro/in vivo characterization of methotrexate-loaded nanoemulsion gel formulations for enhanced topical delivery. Gels. 2022;9(1):3. doi: 10.3390/gels9010003, PMID 36661771.

Maha HL, Sinaga KR, Sinaga KR, Masfria M, Masfria M. Formulation and evaluation of miconazole nitrate nanoemulsion and cream. Asian J Pharm Clin Res. 2018;11(3):319-21. doi: 10.22159/ajpcr.2018.v11i3.22056.

Amin N, Das B. A review on formulation and characterization of nanoemulsion. Int J Curr Pharm Sci. 2019;11(4):1-5. doi: 10.22159/ijcpr.2019v11i4.34925.

Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Celecoxib nanoemulsion: skin permeation mechanism and bioavailability assessment. J Drug Target. 2008;16(10):733-40. doi: 10.1080/10611860802473402, PMID 18985507.

Shakeel F, Ramadan W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf B Biointerfaces. 2010;75(1):356-62. doi: 10.1016/j.colsurfb.2009.09.010, PMID 19783127.

Abulfadhel JN, Al-Shaibani KMH, Al-Gburi KTKA. Original article design and characterization of candesartan cilexetil oral nanoemulsion containing garlic oil. Int J Appl Pharm. 2019;11:116-24.

Ono K, Nakane H, Fukushima M, Chermann JC, Barre Sinoussi F. Differential inhibitory effects of various flavonoids on the activities of reverse transcriptase and cellular DNA and RNA polymerases. Eur J Biochem. 1990;190(3):469-76. doi: 10.1111/j.1432-1033.1990.tb15597.x, PMID 1695572.

Sato M, Murakami K, Uno M, Nakagawa Y, Katayama S, Akagi K. Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the lys residues. J Biol Chem. 2013;288(32):23212-24. doi: 10.1074/jbc.M113.464222, PMID 23792961.

Oyama Y, Fuchs PA, Katayama N, Noda K. Myricetin and quercetin, the flavonoid constituents of ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca(2+)-loaded brain neurons. Brain Res. 1994;635(1-2):125-9. doi: 10.1016/0006-8993(94)91431-1, PMID 8173947.

Gordon MH, Roedig Penman A. Antioxidant activity of quercetin and myricetin in liposomes. Chem Phys Lipids. 1998;97(1):79-85. doi: 10.1016/s0009-3084(98)00098-x, PMID 10081150.

Wang P, Bai HW, Zhu BT. Structural basis for certain naturally occurring bioflavonoids to function as reducing co-substrates of cyclooxygenase I and II. PLOS ONE. 2010;5(8):e12316. doi: 10.1371/journal.pone.0012316, PMID 20808785.

Zamora Ros R, Forouhi NG, Sharp SJ, Gonzalez CA, Buijsse B, Guevara M. Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. J Nutr. 2014;144(3):335-43. doi: 10.3945/jn.113.184945, PMID 24368432.

Yang ZJ, Wang HR, Wang YI, Zhai ZH, Wang LW, Li L. Myricetin attenuated diabetes-associated kidney injuries and dysfunction via regulating nuclear factor (erythroid-derived 2)-like 2 and nuclear factor-κB signaling. Front Pharmacol. 2019;10:647. doi: 10.3389/fphar.2019.00647, PMID 31244660.

Choi HN, Kang MJ, Lee SJ, Kim JI. Ameliorative effect of myricetin on insulin resistance in mice fed a high-fat, high-sucrose diet. Nutr Res Pract. 2014;8(5):544-9. doi: 10.4162/nrp.2014.8.5.544, PMID 25324935.

Syed HK, Peh KK. Identification of phases of various oil, surfactant/ co-surfactants and water system by ternary phase diagram. Acta Pol Pharm. 2014;71(2):301-9. PMID 25272651.

Azeem A, Rizwan M, Ahmad FJ, Iqbal Z, Khar RK, Aqil M. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech. 2009;10(1):69-76. doi: 10.1208/s12249-008-9178-x, PMID 19148761.

Puppala RK, A VL. Optimization and solubilization study of nanoemulsion budesonide and constructing pseudoternary phase diagram. Asian J Pharm Clin Res 2018;12(1):551-3. doi: 10.22159/ajpcr.2018.v12i1.28686.

Back PI, Balestrin LA, Fachel FNS, Nemitz MC, Falkembach M, Soares G. Hydrogels containing soybean isoflavone aglycones-rich fraction-loaded nanoemulsions for wound healing treatment-in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2020;196:111301. doi: 10.1016/j.colsurfb.2020.111301, PMID 32871442.

Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A. Formulation development and optimization using nanoemulsion technique: a technical note. AAPS PharmSciTech. 2007;8(2):28. doi: 10.1208/pt0802028, PMID 17622106.

Parveen R, Baboota S, Ali J, Ahuja A, Vasudev SS, Ahmad S. Oil based nanocarrier for improved oral delivery of silymarin: in vitro and in vivo studies. Int J Pharm. 2011;413(1-2):245-53. doi: 10.1016/j.ijpharm.2011.04.041, PMID 21549187.

Suciati T, Aliyandi A, Satrialdi. Development of transdermal nanoemulsion formulation for simultaneous delivery of protein vaccine and artin-m adjuvant. Int J Pharm Pharm Sci. 2014;6(6):536-46.

Gokhale JP, Mahajan HS, Surana SJ. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: in vivo and in vitro studies. Biomed Pharmacother. 2019;112:108622. doi: 10.1016/j.biopha.2019.108622, PMID 30797146.

Gardouh AR, Faheim SH, Noah AT, Ghorab MM. Influence of formulation factors on the size of nanostructured lipid carriers and nanoemulsions prepared by high shear homogenization. Int J Pharm Pharm Sci. 2018;10(4):61-75. doi: 10.22159/ijpps.2018v10i4.23142.

Yeo E, Yew Chieng CJ, Choudhury H, Pandey M, Gorain B. Tocotrienols-rich naringenin nanoemulgel for the management of diabetic wound: fabrication, characterization and comparative in vitro evaluations. Curr Res Pharmacol Drug Discov. 2021;2:100019. doi: 10.1016/j.crphar.2021.100019, PMID 34909654.

Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-physicochemical characterization, drug release, stability and cytotoxicity. J Drug Deliv Sci Technol. 2018;45:45-53. doi: 10.1016/j.jddst.2018.03.004.

Mathew R, Varkey J. Formulation and in vitro evaluation of self nano emulsifying drug delivery system of quercetin for enhancement of oral bioavailability. Int J Curr Pharm Sci. 2022;14(1):60-9. doi: 10.22159/ijcpr.2022v14i1.44113.

Lodhi S, Pawar RS, Jain AP, Singhai AK. Wound healing potential of Tephrosia purpurea (Linn.) pers. in rats. J Ethnopharmacol. 2006;108(2):204-10. doi: 10.1016/j.jep.2006.05.011, PMID 16806763.

Woessner JF. The determination of hydroxyproline in tissue and protein samples containing a small portion of this imino acid. Arch Biochem Biophys. 1961;193:440-7.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. doi: 10.1016/S0021-9258(19)52451-6, PMID 14907713.

Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195(1):133-40. doi: 10.1016/S0021-9258(19)50881-X, PMID 14938361.

Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170-5. doi: 10.1016/S0021-9258(19)45228-9, PMID 4623845.

Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582(1):67-78. doi: 10.1016/0304-4165(79)90289-7, PMID 760819.

Varshney AC, Sharma DN, Singh M, Sharma SK, Nigam JM. Therapeutic value of bovine saliva in wound healing: a histomorphological study. Indian J Exp Biol. 1997;35(5):535-7. PMID 9378522.

Kawakami K, Yoshikawa T, Hayashi T, Nishihara Y, Masuda K. Microemulsion formulation for enhanced absorption of poorly soluble drugs. II. In vivo study. J Control Release. 2002;81(1-2):75-82. doi: 10.1016/s0168-3659(02)00050-0, PMID 11992680.

Shinoda K, Lindman B. Organized surfactant systems: microemulsions. Langmuir. 1987;3(2):135-49. doi: 10.1021/la00074a001.

Kreilgaard M, Pedersen EJ, Jaroszewski JW. NMR characterization and transdermal drug delivery potential of microemulsion systems. J Control Release. 2000;69(3):421-33. doi: 10.1016/s0168-3659(00)00325-4, PMID 11102682.

Perez GRM, Solis VR. Anti-inflammatory and wound healing potential of Prosthechea michuacana in rats. Pharmacogn Mag. 2009;4:219-25.

Lodhi S, Pawar RS, Jain AP, Jain A, Singhai AK. Effect of Tephrosia purpurea (L) Pers. on partial thickness and full thickness burn wounds in rats. J Complement Integr Med. 2010;7(1):1-15. doi: 10.2202/1553-3840.1344.

Xu HX, Lee SF. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res. 2001;15(1):39-43. doi: 10.1002/1099-1573(200102)15:1<39::aid-ptr684>3.0.co;2-r, PMID 11180521.

Published

07-01-2024

How to Cite

SHAIKH, T. Y., & LODHI, S. (2024). PREPARATION, CHARACTERIZATION AND EVALUATION OF MYRICETIN-LOADED NANOEMULSION FOR THERAPEUTIC EFFICACY IN WOUND HEALING. International Journal of Applied Pharmaceutics, 16(1), 61–70. https://doi.org/10.22159/ijap.2024v16i1.49112

Issue

Section

Original Article(s)