AN UP-TO-DATE REVIEW: MICROSPHERES AS A NEW DRUG DELIVERY SYSTEM

Authors

  • RISE DESNITA Pharmaceutical Sciences Doctoral Study Program, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta-55281, Indonesia. Department of Pharmacy, Faculty of Medicine, Universitas Tanjungpura, Pontianak-78124, Indonesia https://orcid.org/0009-0007-8036-0733
  • EKA NOVIANA Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta-55281, Indonesia https://orcid.org/0000-0002-0556-4011
  • KHADIJAH ZAI Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta-55281, Indonesia https://orcid.org/0000-0003-4447-6177
  • TEUKU NANDA SAIFULLAH SULAIMAN Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta-55281, Indonesia https://orcid.org/0000-0001-6733-0221

DOI:

https://doi.org/10.22159/ijap.2023v15i6.49120

Keywords:

Microspheres, Microparticles, New drug delivery, Polymer, Route of drug use

Abstract

The application of microsphere systems in drug preparations has seen a significant increase in recent years for various purposes. Microsphere systems can be utilized in a range of drug preparations, utilizing polymer types that are appropriate for the intended release target. Microspheres offer numerous benefits and can be used in various applications, including spacer applications, medication administration, and medical diagnostics. Microspheres have minimal negative effects, a more extended therapeutic effect, require fewer doses, and provide more consistent medication absorption. Additionally, they are adaptable, offer effective encapsulation, and are cost-effective. This overview was compiled to provide an up-to-date summary of the latest developments in new drug delivery systems utilizing microsphere dosage forms. Literature from Scopus, ScienceDirect, and PubMed from 2019 to 2022 was searched to provide the latest information. The use of microsphere systems is categorized into various new drug delivery routes, including gastroretentive, colon, nasal and pulmonary, parenteral, ocular, and topical applications.

Downloads

Download data is not yet available.

References

Ravve A. Free-radical chain-growth polymerization. Princ Polym Chem. 2012:69-150.

Du L, Liu S, Hao G, Zhang L, Zhou M, Bao Y. Preparation and release profiles in vitro/vivo of galantamine pamoate loaded poly (Lactideco-Glycolide) (PLGA) microspheres. Front Pharmacol. 2020;11:619327. doi: 10.3389/fphar.2020.619327, PMID 33762929.

Bolourchian N, Bahjat M. Design and in vitro evaluation of eudragit-based extended-release diltiazem microspheres for once and twice-daily administration: the effect of coating on drug release behavior. Turk J Pharm Sci. 2019;16(3):340-7. doi: 10.4274/tjps.galenos.2018.24861, PMID 32454733.

Yang Y, Yuan L, Li J, Muhammad I, Cheng P, Xiao T. Preparation and evaluation of tilmicosin microspheres and lung-targeting studies in rabbits. Vet J. 2019;246:27-34. doi: 10.1016/j.tvjl.2019.01.007, PMID 30902186.

Wu JH, Wang XJ, Li SJ, Ying XY, Hu JB, Xu XL. Preparation of ethyl cellulose microspheres for sustained release of sodium bicarbonate. Iran J Pharm Res. 2019;18(2):556-68. doi: 10.22037/ijpr.2019.1100651, PMID 31531041.

Hadke J, Khan S. Preparation of sterculia foetida-pullulan-based semi-interpenetrating polymer network gastroretentive microspheres of amoxicillin trihydrate and optimization by response surface methodology. Turk J Pharm Sci. 2021;18(4):388-97. doi: 10.4274/tjps.galenos.2020.33341, PMID 34496478.

Zhai J, Wang YE, Zhou X, Ma Y, Guan S. Long-term sustained release poly(lactic-co-glycolic acid) microspheres of asenapine maleate with improved bioavailability for chronic neuropsychiatric diseases. Drug Deliv. 2020;27(1):1283-91. doi: 10.1080/10717544.2020.1815896, PMID 32885707.

Gaber D, Abdoun S, Alfuraihy A, Altasan B, Alsubaiyel A. Superhydrophobic surface for enhancing the bioavailability of salbutamol sulfate from cross-linked microspheres: formulation, characterization, and in vivo evaluation. Drug Des Devel Ther. 2021;15:2869-84. doi: 10.2147/DDDT.S309078, PMID 34239296.

Pan CT, Yu RS, Yang CJ, Chen LR, Wen ZH, Chen NY. Sustained-release and pH-adjusted alginate microspheres-encapsulated doxorubicin inhibit the viabilities in hepatocellular carcinoma-derived cells. Pharmaceutics. 2021;13(9). doi: 10.3390/pharmaceutics13091417, PMID 34575492.

Qin W, He Y, Guo Z, Zhang L, Wu L, Yin X. Optimization of taste-masking on ibuprofen microspheres with selected structure features. Asian J Pharm Sci. 2019;14(2):174-82. doi: 10.1016/j.ajps.2018.05.003, PMID 32104449.

Priyanka C, Anurag S, Payal A, Surendra J. Using the box-behnken experimental design development of gastroretentive mucoadhesive microspheres of simvastatin by spray drying method. Indian Drugs. 2020;57(10):65-70.

Kharb M, Tanwar YS. Development and statistical optimization of gastroretantive floating microspheres of pregabalin prepared by w/o/o multiple emulsion method. Int J App Pharm. 2021;13(3):199-206. doi: 10.22159/ijap.2021v13i3.41001.

Ozakar RS. Development and in vitro characterization of gastroretentive formulations as calcium pectinate hydrogel pellets of pregabalin by ionotropic gelation method. Indian J Pharm Educ Res. 2022;56(1s):s9-s20. doi: 10.5530/ijper.56.1s.38.

Goswami A, Jain NK, Jain N. In vitro evaluation of alogliptin encapsulated novel floating microspheres for gastroretentive delivery. Lat Am J Pharm. 2022;41(4):831-5.

Bhise M, Shukla K, Jain S, Bhajipale N, Sudke S, Burakle P. Development and evaluation of floating microspheres of anticonvulsant drug by 32 full factorial design. Turk J Pharm Sci. 2022;19(5):595-602. doi: 10.4274/tjps.galenos.2021.53050, PMID 36317946.

Wu Y, Zhang W, Huang J, Luo Z, Li J, Wang L. Mucoadhesive improvement of alginate microspheres as potential gastroretentive delivery carrier by blending with Bletilla striata polysaccharide. Int J Biol Macromol. 2020;156:1191-201. doi: 10.1016/j.ijbiomac.2019.11.156, PMID 31756485.

Mahor S, Chandra P, Prasad N. Design and in vitro evaluation of float-adhesive famotidine microspheres by using natural polymers for gastroretentive properties. Indian J Pharm Educ Res. 2021;55(2):407-17. doi: 10.5530/ijper.55.2.78.

Jain N, Jain N, Singh N, Sharma U, Jain NK, Dwivedi S. Fabrication and characterization of novel antiulcer drug delivery system: LBG/PVA based interpenetrating polymer network (IPN) mucoadhesive microspheres of famotidine. Lat Am J Pharm. 2021;40(12):2862-72.

Rohilla S, Bhatt DC, Ahalwat S. Effect processing variables on the characteristics of itraconazole hollow microspheres. Int J App Pharm. 2019;11(6):108-15. doi: 10.22159/ijap.2019v11i6.35098.

Srivastava A, Verma A, Saraf S, Jain A, Tiwari A, Panda PK. Mucoadhesive gastroretentive microparticulate system for programmed delivery of famotidine and clarithromycin. J Microencapsul. 2021;38(3):151-63. doi: 10.1080/02652048.2020.1851787, PMID 33205689.

Kumar S, Goyal N. Formulation and characterization of chitosan microparticulate system using central composite design for the drug: lafutidine. Indian J Pharm Educ Res. 2021;55(2):354-62. doi: 10.5530/ijper.55.2.73.

Kumar S, Tiwari A, Goyal N. Floating microspheres of lafutidine: formulation, optimization, characterization, in vitro and in vivo floatability studies using eudragit grades. Indian J Pharm Educ Res. 2022;56(3):681-8. doi: 10.5530/ijper.56.3.116.

Meng S, Wang S, Piao MG. Prescription optimization of gastroretentive furosemide hollow-bioadhesive microspheres via box-behnken design: in vitro characterization and in vivo evaluation. J Drug Deliv Sci Technol. 2022;70. doi: 10.1016/j.jddst.2022.103235.

Neelam S, Meenakshi B. Formulation and evaluation of polymeric microspheres using box-behnken design. Asian J Pharm Clin Res. 2022;15(10):47-55. doi: 10.22159/ajpcr.2022.v15i10.45250.

Pande S, Vashi J, Solanki A. Formulation and characterization of ileo-colonic targeted mucoadhesive microspheres containing flurbiprofen for treatment of ulcerative colitis. Res J Pharm Technol. 2020;13(7):3377-82. doi: 10.5958/0974-360X.2020.00600.9.

Kassem MA, El Shaboury KME, Mohamed AI. Application of central composite design for the development and evaluation of chitosan-based colon targeted microspheres and in vitro characterization. Indian J Pharm Sci. 2019;81(2):354-64. doi: 10.36468/pharmaceutical-sciences.517.

Akanny E, Bourgeois S, Bonhommé A, Commun C, Doleans Jordheim A, Bessueille F. Development of enteric polymer-based microspheres by spray-drying for colonic delivery of lactobacillus rhamnosus GG. Int J Pharm. 2020;584:119414. doi: 10.1016/j.ijpharm.2020.119414, PMID 32438040.

Jaswanth Gowda BH, Shankar SJ, Munisamy M, Akshatha RS, Sagar VS. Development of pH-dependent chronomodulated delivery systems of 5-fluorouracil and oxaliplatin to treat colon cancer. Int J Appl Pharm. 2020;12(5):118-30.

Lavhate KS, Solunke RS, Kore KJ, Shete RV, Deshmukh MT. Development and characterization of mesalamine microsphere for colon-specific drug delivery. Res J Pharm Technol. 2020;13(4):1747-51. doi: 10.5958/0974-360X.2020.00315.7.

Das S, Das MK. Synthesis and characterization of thiolated jackfruit seed starch as a colonic drug delivery carrier. Int J App Pharm. 2019;11(3):53-62. doi: 10.22159/ijap.2019v11i3.31895.

Sarangi MK, Rao MEB, Parcha V, Upadhyay A. Development and characterization of colon-targeting 5-fluorouracil multiparticulate beads. Indian J Pharm Sci. 2020;82(3):435-48. doi: 10.36468/pharmaceutical-sciences.666.

Gadalla HH, Mohammed FA, El-Sayed AM, Soliman GM. Colon-targeting of progesterone using hybrid polymeric microspheres improves its bioavailability and in vivo biological efficacy. Int J Pharm. 2020;577:119070. doi: 10.1016/j.ijpharm.2020.119070, PMID 31981708.

Deng XQ, Zhang HB, Wang GF, Xu D, Zhang WY, Wang QS. Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer. Int J Pharm. 2019;570:118644. doi: 10.1016/j.ijpharm.2019.118644, PMID 31465837.

Bobokalonov J, Muhidinov Z, Nasriddinov A, Jomnurodov A, Khojaeva F, Komilova G. Evaluation of extended-release of piroxicam-loaded pectin-zein hydrogel microspheres: in vitro, ex vivo, and in vivo studies. Curr Drug Deliv. 2022;19(10):1093-101. doi: 10.2174/1567201819666220304092012, PMID 35249486.

Patel NC, Patel A, Patel JK. Development of interpenetrating microspheres of chitosan and gum arabic for epigallocatechin gallate to enhance colonic delivery. Indian J Pharm Sci. 2021;83(4):765-74. doi: 10.36468/pharmaceutical-sciences.828.

Patel NC, Patel AP, K Patel JK. Preparation and characterization of curcumin and epigallocatechin gallate co-loaded polymeric microspheres for colonic delivery. Res J Pharm Technol. 2021;14(10):5077-83. doi: 10.52711/0974-360X.2021.00885.

Dhas SK, Deshmukh G. Formulation and evaluation of meloxicam microspheres for colon targeted drug delivery. Asian J Pharm Clin Res. 2021;14(8):45-51. doi: 10.22159/ajpcr.2021.v14i8.38482.

Wang S, Sun Y, Zhang J, Cui X, Xu Z, Ding D. Astragalus polysaccharides/chitosan microspheres for nasal delivery: preparation, optimization, characterization, and pharmacodynamics. Front Pharmacol. 2020;11:230. doi: 10.3389/fphar.2020.00230, PMID 32256349.

Pandey J, Shankar R, Kumar M, Shukla K, Kumari B. Development of nasal mucoadhesive microspheres of granisetron: a potential drug. Drug Res (Stuttg). 2020;70(8):367. doi: 10.1055/a-1193-4781, PMID 32559774.

Bartos C, Varga P, Szabo Revesz P, Ambrus R. Physico-chemical and in vitro characterization of chitosan-based microspheres intended for nasal administration. Pharmaceutics. 2021;13(5):1-13. doi: 10.3390/pharmaceutics13050608, PMID 33922172.

Perkusic M, Nizic Nodilo L, Ugrina I, Spoljaric D, Jakobusic Brala C, Pepic I. Tailoring functional spray-dried powder platform for efficient donepezil nose-to-brain delivery. Int J Pharm. 2022;624:122038. doi: 10.1016/j.ijpharm.2022.122038, PMID 35870666.

Zafar A, Afzal M, Quazi AM, Yasir M, Kazmi I, Al-Abaasi FA. Chitosan-ethyl cellulose microspheres of domperidone for nasal delivery: preparation, in vitro characterization, in vivo study for pharmacokinetic evaluation and bioavailability enhancement. J Drug Deliv Sci Technol. 2021;63. doi: 10.1016/j.jddst.2021.102471.

Gao Y, Almalki WHH, Afzal O, Panda SKK, Kazmi I, Alrobaian M. Systematic development of lectin conjugated microspheres for nose-to-brain delivery of rivastigmine for the treatment of Alzheimer’s disease. Biomed Pharmacother. 2021;141:111829. doi: 10.1016/j.biopha.2021.111829, PMID 34147904.

Gaspar MC, Pais AACC, Sousa JJS, Brillaut J, Olivier JC. Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. Int J Pharm. 2019;556:117-24. doi: 10.1016/j.ijpharm.2018.12.005, PMID 30528632.

Shahin HI, Vinjamuri BP, Mahmoud AA, Shamma RN, Mansour SM, Ammar HO. Design and evaluation of novel inhalable sildenafil citrate spray-dried microparticles for pulmonary arterial hypertension. J Control Release. 2019;302:126-39. doi: 10.1016/j.jconrel.2019.03.029, PMID 30940497.

Nizic L, Potas J, Winnicka K, Szekalska M, Erak I, Gretic M. Development, characterisation and nasal deposition of melatonin-loaded pectin/hypromellose microspheres. Eur J Pharm Sci. 2020;141:105115. doi: 10.1016/j.ejps.2019.105115, PMID 31654755.

Gangane P, Kawtikwar P. Development of donepezil hydrochloride loaded gellan gum-based nasal mucoadhesive microspheres by spray drying method. Indian J Pharm Educ Res. 2020;54(4):935-45. doi: 10.5530/ijper.54.4.187.

Pandya T, Bhatt P, Misra A. Development and evaluation of exenatide loaded PLGA nanoparticles for intranasal delivery in the treatment of obesity. Drug Deliv Lett. 2022;12(2):149-62. doi: 10.2174/2210303112666220318155445.

Dawre S, Waghela S, Saraogi G. Statistically designed vitamin D3 encapsulated PLGA microspheres dispersed in thermoresponsive in situ gel for nasal delivery. J Drug Deliv Sci Technol. 2022;75. doi: 10.1016/j.jddst.2022.103688.

M HD, EH, NS. Development of carrageenan polymer for encapsulation of ciprofloxacin HCl: in vitro characterization. Int J Drug Deliv Technol. 2019;9(1):89-93. doi: 10.25258/ijddt.9.1.14.

Nizic Nodilo L, Ugrina I, Spoljaric D, Amidzic Klaric D, Jakobusic Brala C, Perkusic M. A dry powder platform for nose-to-brain delivery of dexamethasone: formulation development and nasal deposition studies. Pharmaceutics. 2021;13(6). doi: 10.3390/pharmaceutics13060795.

Khan S, Gangane PS, Mahapatra DK, Mahajan NM. Natural and synthetic polymers assisted development of lurasidone hydrochloride intranasal mucoadhesive microspheres. Indian J Pharm Educ Res. 2019;54(1):213-22. doi: 10.5530/ijper.54.1.25.

Kabiri M, Bolourian H, Dehghan S, Tafaghodi M. The dry powder formulation of mixed cross-linked dextran microspheres and tetanus toxoid-loaded trimethyl chitosan nanospheres as a potent adjuvant for nasal delivery system. Iran J Basic Med Sci. 2021;24(1):116-22. doi: 10.22038/ijbms.2020.49486.11313, PMID 33643579.

Hussein N, Omer H, Ismael A, Albed Alhnan M, Elhissi A, Ahmed W. Spray-dried alginate microparticles for potential intranasal delivery of ropinirole hydrochloride: development, characterization and histopathological evaluation. Pharm Dev Technol. 2020;25(3):290-9. doi: 10.1080/10837450.2019.1567762, PMID 30626225.

Schilling AL, Kulahci Y, Moore J, Wang EW, Lee SE, Little SR. A thermoresponsive hydrogel system for long-acting corticosteroid delivery into the paranasal sinuses. J Control Release. 2021;330:889-97. doi: 10.1016/j.jconrel.2020.10.062, PMID 33157189.

Beg S, Rahman M, Panda SKK, Alharbi KSS, Alruwaili NKK, Ameeduzzafar. Nasal mucoadhesive microspheres of lercanidipine with improved systemic bioavailability and antihypertensive activity. J Pharm Innov. 2021;16(2):237-46. doi: 10.1007/s12247-020-09441-5.

Lapidot T, Bouhajib M, Faulknor J, Khan S, Krayz GT, Abrutzky C. A novel, faster-acting, dry powder-based, naloxone intranasal formulation for opioid overdose. Pharm Res. 2022;39(5):963-75. doi: 10.1007/s11095-022-03247-5, PMID 35386013.

Bansal R, Kaushik D, Jain S. Development and evaluation of mucoadhesive microspheres of hydrocortisone sodium succinate in the treatment of chronic sinusitis. Asian J Pharm Clin Res. 2022;16(1):6-11. doi: 10.22159/ajpcr.2023.v16i1.46250.

Molavi F, Barzegar Jalali M, Hamishehkar H. Changing the daily injection of glatiramer acetate to a monthly long-acting product through designing polyester-based polymeric microspheres. BioImpacts. 2022;12(6):501-13. doi: 10.34172/bi.2022.23733, PMID 36644544.

Pawar MA, Vora LK, Kompella P, Pokuri VK, Vavia PR. Long-acting microspheres of human chorionic gonadotropin hormone: in vitro and in vivo evaluation. Int J Pharm. 2022;611:121312. doi: 10.1016/j.ijpharm.2021.121312, PMID 34822964.

Satapathy SR, Sahoo RN, Satapathy B, Immani R, Panigrahi L, Mallick S. Development and characterization of leuprolide acetate encapsulated PLGA microspheres for parenteral controlled release depot injection. Indian J Pharm Educ Res. 2021;55(1):107-16. doi: 10.5530/ijper.55.1.14.

Kozak J, Rabiskova M, Lamprecht A. Muscle tissue as a surrogate for in vitro drug release testing of parenteral depot microspheres. AAPS PharmSciTech. 2021;22(3):119. doi: 10.1208/s12249-021-01965-4, PMID 33782794.

Andhariya JV, Jog R, Shen J, Choi S, Wang Y, Zou Y. Development of level a in vitro-in vivo correlations for peptide-loaded PLGA microspheres. J Control Release. 2019;308:1-13. doi: 10.1016/j.jconrel.2019.07.013, PMID 31301338.

Andhariya JV, Jog R, Shen J, Choi S, Wang Y, Zou Y. In vitro-in vivo correlation of parenteral PLGA microspheres: effect of variable burst release. J Control Release. 2019;314:25-37. doi: 10.1016/j.jconrel.2019.10.014.

Thanh Uyen NT, Abdul Hamid ZA, Thi LA, Ahmad NB. Synthesis and characterization of curcumin-loaded alginate microspheres for drug delivery. J Drug Deliv Sci Technol. 2020;58. doi: 10.1016/j.jddst.2020.101796.

Li X, He G, Su F, Chu Z, Xu L, Zhang Y. Regorafenib-loaded poly (lactide-co-glycolide) microspheres designed to improve transarterial chemoembolization therapy for hepatocellular carcinoma. Asian J Pharm Sci. 2020;15(6):739-51. doi: 10.1016/j.ajps.2020.01.001, PMID 33363629.

Grizic D, Lamprecht A. Predictability of drug encapsulation and release from propylene carbonate/PLGA microparticles. Int J Pharm. 2020;586:119601. doi: 10.1016/j.ijpharm.2020.119601, PMID 32622807.

Kozak J, Rabiskova M, Lamprecht A. In vitro drug release testing of parenteral formulations via an agarose gel envelope to closer mimic tissue firmness. Int J Pharm. 2021;594:120142. doi: 10.1016/j.ijpharm.2020.120142, PMID 33326826.

Kaur L, Sinha VR. Long-acting polycaprolactone based parenteral formulation of aripiprazole targeting behavioural and biochemical deficit in schizophrenia. J Pharm Sci. 2021;110(5):2185-95. doi: 10.1016/j.xphs.2020.12.028, PMID 33383057.

Van der Kooij RS, Steendam R, Zuidema J, Frijlink HW, Hinrichs WLJ. Microfluidic production of polymeric core-shell microspheres for the delayed pulsatile release of bovine serum albumin as a model antigen. Pharmaceutics. 2021;13(11). doi: 10.3390/pharmaceutics13111854, PMID 34834269.

Mali S, Oza N. Central composite design for formulation and optimization of long-acting injectable (LAI) microspheres of paliperidone palmitate. Int J App Pharm. 2021;13(5):87-98. doi: 10.22159/ijap.2021v13i5.42297.

Mogaibo AI, Meleshko AV, Suslov VV, Rybchenko OI, Domnina YM, Kedik SA. Quantitative determination of ivermectin in polymer microspheres. Razrabotka I Registraciâ Lekarstvennyh Sredstv. 2022;11(1):90-7. doi: 10.33380/2305-2066-2022-11-1-90-97.

Liu J, Li S, Li G, Li X, Yu C, Fu Z. Highly bioactive, bevacizumab-loaded, sustained-release PLGA/PCADK microspheres for intravitreal therapy in ocular diseases. Int J Pharm. 2019;563:228-36. doi: 10.1016/j.ijpharm.2019.04.012, PMID 30959236.

Yang J, Luo L, Oh Y, Meng T, Chai G, Xia S. Sunitinib malate-loaded biodegradable microspheres for the prevention of corneal neovascularization in rats. J Control Release. 2020;327:456-66. doi: 10.1016/j.jconrel.2020.08.019, PMID 32822742.

Girgis GNS. Formulation and evaluation of atorvastatin calcium-poly-ε-caprolactone nanoparticles loaded ocular inserts for sustained release and antiinflammatory efficacy. Curr Pharm Biotechnol. 2020;21(15):1688-98. doi: 10.2174/1389201021666200519133350, PMID 32427080.

Joshi A. Microparticulates for ophthalmic drug delivery. J Ocul Pharmacol. 1994;10(1):29-45. doi: 10.1089/jop.1994.10.29, PMID 8207333.

Bin Choy Y, Park JH, Prausnitz MR. Mucoadhesive microparticles engineered for ophthalmic drug delivery. J Phys Chem Solids. 2008 May;69(5-6):1533-6. doi: 10.1016/j.jpcs.2007.10.043, PMID 20657721.

Chau DYS, Tint NL, Collighan RJ, Griffin M, Dua HS, Shakesheff KM. The visualisation of vitreous using surface-modified poly(lactic-co-glycolic acid) microparticles. Br J Ophthalmol. 2010;94(5):648-53. doi: 10.1136/bjo.2009.163642, PMID 20447968.

Hirenkumar M, Steven S. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2012;3(3):1-19.

Aragon Navas A, Rodrigo MJ, Garcia Herranz D, Martinez T, Subias M, Mendez S. Mimicking chronic glaucoma over 6 months with a single intracameral injection of dexamethasone/fibronectin-loaded PLGA microspheres. Drug Deliv. 2022;29(1):2357-74. doi: 10.1080/10717544.2022.2096712, PMID 35904152.

Zhou J, Chen Y, Luo M, Deng F, Lin S, Wu W. Dual cross-linked chitosan microspheres formulated with spray-drying technique for the sustained release of levofloxacin. Drug Dev Ind Pharm. 2019;45(4):568-76. doi: 10.1080/03639045.2019.1569025, PMID 30652515.

Arranz Romera A, Esteban Perez S, Molina Martínez IT, Bravo Osuna I, Herrero Vanrell R. Co-delivery of glialcell–derived neurotrophic factor (GDNF) and tauroursodeoxycholic acid (TUDCA) from PLGA microspheres: potential combination therapy for retinal diseases. Drug Deliv Transl Res. 2021;11(2):566-80. doi: 10.1007/s13346-021-00930-9, PMID 33641047.

Barbosa Alfaro D, Andres Guerrero V, Fernandez Bueno I, Garcia Gutierrez MT, Gil Alegre E, Molina Martinez IT. Dexamethasone PLGA microspheres for sub-tenon administration: influence of sterilization and tolerance studies. Pharmaceutics. 2021;13(2):1-21. doi: 10.3390/pharmaceutics13020228, PMID 33562155.

Sisodiya R, Jain N. Novel semi-interpenetrating polymer network microspheres of timolol maleate: characterization and ocular drug delivery. Lat Am J Pharm. 2022;41(4):789-94.

Arranz Romera A, Davis BM, Bravo Osuna I, Esteban Perez S, Molina Martinez IT, Shamsher E. Simultaneous co-delivery of neuroprotective drugs from multi-loaded PLGA microspheres for the treatment of glaucoma. J Control Release. 2019;297:26-38. doi: 10.1016/j.jconrel.2019.01.012, PMID 30664980.

Barbosa Alfaro D, Andres Guerrero V, Fernandez Bueno I, Garcia Gutierrez MT, Gil Alegre E, Molina Martinez IT. Dexamethasone PLGA microspheres for sub-tenon administration: influence of sterilization and tolerance studies. Pharmaceutics. 2021;13(2):1-21. doi: 10.3390/pharmaceutics13020228, PMID 33562155.

Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm. 2019;87(3). doi: 10.3390/scipharm87030020.

Hariyadi DM, Rosita N, Rahayu A. Design, optimization and characterization of glutathione loaded-alginate microspheres for topical antiaging. J Pharm Pharmacogn Res. 2019;7(4):223-33.

Sharma N, Misra S. Smart gn-keto nanohybrid embedded topical system for effective management of dermatophytosis. Drug Deliv Lett. 2019;9(1):21-8. doi: 10.2174/2210303108666181105112557.

Putra INSA, Purwanti T, Hariyadi DM. Characterization of microspheres in alginate-gelatin matrix with ionotropic gelation method and aerosolization technique. Res J Pharm Technol. 2020;13(9):4239-43. doi: 10.5958/0974-360X.2020.00748.9.

Cirri M, Maestrelli F, Scuota S, Bazzucchi V, Mura P. Development and microbiological evaluation of chitosan and chitosan-alginate microspheres for vaginal administration of metronidazole. Int J Pharm. 2021;598:120375. doi: 10.1016/j.ijpharm.2021.120375, PMID 33581271.

Gusai T, Dhavalkumar M, Soniwala M, Dudhat K, Vasoya J, Chavda J. Formulation and optimization of microsponge-loaded emulgel to improve the transdermal application of acyclovir-a DOE based approach. Drug Deliv Transl Res. 2021;11(5):2009-29. doi: 10.1007/s13346-020-00862-w, PMID 33159290.

Tomar MK, Pahwa S, Tyagi LK, Gupta C, Maan P, Sethi VA. Formulation, characterization, and antibacterial study of microsponge-loaded gel of clarithromycin for topical drug delivery. Drug Deliv Lett. 2022;12(2):122-34. doi: 10.2174/2210303112666220412134241.

Rathore S, Ram A, Lall D, Agrawal B, Soni P, Javed Naim MJ. Development and evaluation of sunscreen cream containing benzophenone-3 microspheres for enhancing sunscreen activity. Res J Pharm Technol. 2021;14(11):6078-84. doi: 10.52711/0974-360X.2021.01056.

Pandey S, Misra SK, Sharma N. Development of usnic acid embedded eudragit microspheres for alleviation of nosocomial infections. Anti-Infect Agents. 2020;18(1):79-87. doi: 10.2174/2211352517666190126161205.

Published

07-11-2023

How to Cite

DESNITA, R., NOVIANA, E., ZAI, K., & SAIFULLAH SULAIMAN, T. N. (2023). AN UP-TO-DATE REVIEW: MICROSPHERES AS A NEW DRUG DELIVERY SYSTEM. International Journal of Applied Pharmaceutics, 15(6), 82–89. https://doi.org/10.22159/ijap.2023v15i6.49120

Issue

Section

Review Article(s)