VIRTUAL SCREENING OF FDA-APPROVED DRUGS BY MOLECULAR DOCKING AND DYNAMICS SIMULATION TO RECOGNIZE POTENTIAL INHIBITORS AGAINST MYCOBACTERIUM TUBERCULOSIS ENOYL-ACYL CARRIER PROTEIN REDUCTASE ENZYME

Authors

  • HASANAIN ABDULHAMEED ODHAR Department of pharmacy, Al-Zahrawi University College, Karbala, Iraq https://orcid.org/0000-0002-5052-2080
  • AHMED FADHIL HASHIM Department of pharmacy, Al-Zahrawi University College, Karbala, Iraq
  • SALAM WAHEED AHJEL Department of pharmacy, Al-Zahrawi University College, Karbala, Iraq
  • SUHAD SAMI HUMADI Department of pharmacy, Al-Zahrawi University College, Karbala, Iraq

DOI:

https://doi.org/10.22159/ijap.2024v16i1.49471

Keywords:

Docking, Dynamics simulation, Repurpose, Mycobacterium tuberculosis, Enoyl-acyl carrier protein reductase, InhA

Abstract

Objective: This in silico study is aimed at identification of new possible inhibitors against Mycobacterium tuberculosis InhA enzyme by screening a library of FDA-approved drugs.

Methods: In this in silico study, a library of FDA-approved drugs was screened by molecular docking against the monomer of enoyl-acyl carrier protein reductase to recognize potential inhibitors. Then, those best drugs with minimum docking energy were subjected to molecular dynamics simulation.

Results: Out of the top ten docking hits, only revefenacin was able to maintain the closet proximity to InhA enzyme binding pocket during the two rounds of dynamics simulation. Analysis of molecular dynamics (MD) simulation data indicated that the antimuscarinic drug revefenacin has a ligand movement Root-Mean-Square Deviation (RMSD) that didn’t exceed 4 Angstrom. Also, in this MD study, revefenacin has a superior binding energy of -35.59 Kcal/mol as compared to -13.88 Kcal/mol for the other hit ergotamine. These favorable MD simulation records for revefenacin can be explained by its ability to continuously interact with enzyme binding pocket by two hydrogen bonds.

Conclusion: We report that the antimuscarinic drug revefenacin may have the potential to inhibit the enoyl-acyl carrier protein reductase for Mycobacterium tuberculosis. However, these preliminary results must be further evaluated by in vitro and in vivo studies.

Downloads

Download data is not yet available.

References

Gordon SV, Parish T. Microbe profile: mycobacterium tuberculosis: humanity’s deadly microbial foe. Microbiology (Reading). 2018 Apr 1;164(4):437-9. doi: 10.1099/MIC.0.000601, PMID 29465344.

Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B. What we know about tuberculosis transmission: an overview. J Infect Dis. 2017;216 Suppl 6:S629-35. doi: 10.1093/INFDIS/JIX362, PMID 29112747.

Eruslanov EB, Majorov KB, Orlova MO, Mischenko VV, Kondratieva TK, Apt AS. Lung cell responses to M. tuberculosis in genetically susceptible and resistant mice following intratracheal challenge. Clin Exp Immunol. 2004 Jan;135(1):19-28. doi: 10.1111/j.1365-2249.2004.02328.x, PMID 14678260.

Ahmad S. Pathogenesis, immunology, and diagnosis of latent mycobacterium tuberculosis infection. Clin Dev Immunol. 2011;2011:814943. doi: 10.1155/2011/814943, PMID 21234341.

Dasan N, Babu G, George S. Molecular docking studies and synthesis of 3, 4 – disubstituted triazoles as mycobacterium tuberculosis enoyl-acp reductase and cyp-51 inhibitors. Int J Pharm Pharm Sci. 2019 Jan 1;11(1):85-91. doi: 10.22159/IJPPS.2019V11I1.29428.

Asnawi A, Febrina E, Aligita W, Kurnia D, Aman LO, Yuliantini A. Screening of ASHITABA (angelica KEISKEI K.) compounds as potential mycobacterium tuberculosis KASA inhibitors. Int J App Pharm. 2022 Dec 27;14Special Issue 5:80-5. doi: 10.22159/ijap.2022.v14s5.13.

Munoz L, Stagg HR, Abubakar I. Diagnosis and management of latent tuberculosis infection. Cold Spring Harb Perspect Med. 2015 Nov 1;5(11):A017830. doi: 10.1101/cshperspect.a017830, PMID 26054858.

Acharya B, Acharya A, Gautam S, Ghimire SP, Mishra G, Parajuli N. Advances in diagnosis of tuberculosis: an update into the molecular diagnosis of mycobacterium tuberculosis. Mol Biol Rep. 2020 May 1;47(5):4065-75. doi: 10.1007/S11033-020-05413-7, PMID 32248381.

Chideya S, Winston CA, Peloquin CA, Bradford WZ, Hopewell PC, Wells CD. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from botswana. Clin Infect Dis. 2009 Jun 6;48(12):1685-94. doi: 10.1086/599040, PMID 19432554.

Shaji J, Shaikh M. Drug-resistant tuberculosis: recent approach in polymer-based nanomedicine. Int J Pharm Pharm Sci. 2016 Oct 1;8(10):1-6. doi: 10.22159/IJPPS.2016V8I10.11295.

Seung KJ, Keshavjee S, Rich ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med. 2015;5(9):a017863. doi: 10.1101/cshperspect.a017863, PMID 25918181.

Cho T, Khatchadourian C, Nguyen H, Dara Y, Jung S, Venketaraman V. A review of the BCG vaccine and other approaches toward tuberculosis eradication. Hum Vaccin Immunother. 2021 Aug;17(8):2454-70. doi: 10.1080/21645515.2021.1885280, PMID 33769193.

Jarlier V, Nikaido H. Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett. 1994 Oct;123(1-2):11-8. doi: 10.1111/j.1574-6968.1994.tb07194.x, PMID 7988876.

Kremer LS, Besra GS. Current status and future development of antitubercular chemotherapy. Expert Opin Investig Drugs. 2002 Aug;11(8):1033-49. doi: 10.1517/13543784.11.8.1033, PMID 12150700.

Rotta M, Pissinate K, Villela AD, Back DF, Timmers LFSM, Bachega JFR. Piperazine derivatives: synthesis, inhibition of the mycobacterium tuberculosis enoyl-acyl carrier protein reductase and SAR studies. Eur J Med Chem. 2015 Jan;90:436-47. doi: 10.1016/j.ejmech.2014.11.034, PMID 25461892.

Gan JH, Liu JX, Liu Y, Chen SW, Dai WT, Xiao ZX. DrugRep: an automatic virtual screening server for drug repurposing. Acta Pharmacol Sin. 2023 Apr;44(4):888-96. doi: 10.1038/s41401-022-00996-2, PMID 36216900.

Rozwarski DA, Vilchèze C, Sugantino M, Bittman R, Sacchettini JC. Crystal structure of the mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. J Biol Chem. 1999 May;274(22):15582-9. doi: 10.1074/jbc.274.22.15582, PMID 10336454.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004 Oct;25(13):1605-12. doi: 10.1002/JCC.20084, PMID 15264254.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec;30(16):2785-91. doi: 10.1002/JCC.21256, PMID 19399780.

Trott O, Olson AJ. AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 1;31(2):455-61. doi: 10.1002/JCC.21334, PMID 19499576.

Carbone J, Ghidini A, Romano A, Gentilucci L, Musiani F. PacDOCK: a web server for positional distance-based and interaction-based analysis of docking results. Molecules. 2022 Oct 1;27(20). doi: 10.3390/molecules27206884, PMID 36296477.

Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43(W1):W443-7. doi: 10.1093/NAR/GKV315, PMID 25873628.

Krieger E, Vriend G. Yasara view–molecular graphics for all devices–from smartphones to workstations. Bioinformatics. 2014 Oct 15;30(20):2981-2. doi: 10.1093/BIOINFORMATICS/BTU426, PMID 24996895.

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004 Jul 15;25(9):1157-74. doi: 10.1002/JCC.20035, PMID 15116359.

Abdulhameed Odhar H, Fadhil Hashim A, Sami Humad S. Molecular docking analysis and dynamics simulation of salbutamol with the monoamine oxidase B (MAO-B) enzyme. Bioinformation. 2022;18(3):304-9. doi: 10.6026/97320630018304, PMID 36518132.

Hashim AF, Odhar HA, Ahjel SW. Molecular docking and dynamics simulation analysis of nucleoprotein from the crimea-congo hemorrhagic fever virus strain baghdad-12 with FDA-approved drugs. Bioinformation. 2022;18(5):442-9. doi: 10.6026/97320630018442, PMID 36945218.

Odhar HA, Hashim AF, Ahjel SW, Humadi SS. Molecular docking and dynamics simulation analysis of the human FXIIa with compounds from the mcule database. Bioinformation. 2023;19(2):160-6. doi: 10.6026/97320630019160, PMID 37814681.

Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 2002 Dec;23(16):1623-41. doi: 10.1002/JCC.10128, PMID 12395429.

Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015 Jul 7;11(8):3696-713. doi: 10.1021/acs.jctc.5b00255, PMID 26574453.

Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model. 2009 Feb 23;49(2):444-60. doi: 10.1021/CI800293N, PMID 19434845.

Gurung AB, Ali MA, Lee J, Abul Farah M, Al-Anazi KM. In silico screening of FDA approved drugs reveals ergotamine and dihydroergotamine as potential coronavirus main protease enzyme inhibitors. Saudi J Biol Sci. 2020 Oct 1;27(10):2674-82. doi: 10.1016/j.sjbs.2020.06.005, PMID 32837219.

Gul S, Ozcan O, Asar S, Okyar A, Barıs I, Kavakli IH. In silico identification of widely used and well-tolerated drugs as potential SARS-CoV-2 3C-like protease and viral RNA-dependent RNA polymerase inhibitors for direct use in clinical trials. J Biomol Struct Dyn. 2021;39(17):6772-91. doi: 10.1080/07391102.2020.1802346, PMID 32752938.

Pooventhiran T, Marondedze EF, Govender PP, Bhattacharyya U, Rao DJ, Aazam ES. Energy and reactivity profile and proton affinity analysis of rimegepant with special reference to its potential activity against SARS-CoV-2 virus proteins using molecular dynamics. J Mol Model. 2021 Oct 1;27(10):276. doi: 10.1007/S00894-021-04885-Z, PMID 34480634.

Mehyar N, Mashhour A, Islam I, Alhadrami HA, Tolah AM, Alghanem B. Discovery of zafirlukast as a novel SARS-CoV-2 helicase inhibitor using in silico modelling and a FRET-based assay. SAR QSAR Environ Res. 2021;32(12):963-83. doi: 10.1080/1062936X.2021.1993995, PMID 34818959.

Martinez AA, Espinosa BA, Adamek RN, Thomas BA, Chau J, Gonzalez E. Breathing new life into West Nile virus therapeutics; discovery and study of zafirlukast as an NS2B-NS3 protease inhibitor. Eur J Med Chem. 2018 Sep 5;157:1202-13. doi: 10.1016/j.ejmech.2018.08.077, PMID 30193218.

Charoute H, Elkarhat Z, Elkhattabi L, El Fahime E, Oukkache N, Rouba H. Computational screening of potential drugs against COVID-19 disease: the neuropilin-1 receptor as a molecular target. Virus Disease. 2022 Mar 1;33(1):23-31. doi: 10.1007/S13337-021-00751-X, PMID 35079600.

Pinault L, Han JS, Kang CM, Franco J, Ronning DR. Zafirlukast inhibits complexation of Lsr2 with DNA and growth of mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013 May;57(5):2134-40. doi: 10.1128/AAC.02407-12, PMID 23439641.

Odhar HA, Ahjel SW, Albeer AAMA, Hashim AF, Rayshan AM, Humadi SS. Molecular docking and dynamics simulation of FDA-approved drugs with the main protease from 2019 novel coronavirus. Bioinformation. 2020 Mar 31;16(3):236-44. doi: 10.6026/97320630016236, PMID 32308266.

Published

07-01-2024

How to Cite

ODHAR, H. A., HASHIM, A. F., AHJEL, S. W., & HUMADI, S. S. (2024). VIRTUAL SCREENING OF FDA-APPROVED DRUGS BY MOLECULAR DOCKING AND DYNAMICS SIMULATION TO RECOGNIZE POTENTIAL INHIBITORS AGAINST MYCOBACTERIUM TUBERCULOSIS ENOYL-ACYL CARRIER PROTEIN REDUCTASE ENZYME. International Journal of Applied Pharmaceutics, 16(1), 261–266. https://doi.org/10.22159/ijap.2024v16i1.49471

Issue

Section

Original Article(s)